Nvidia_A100

Ampere (microarchitecture)

Ampere (microarchitecture)

GPU microarchitecture by Nvidia


Ampere is the codename for a graphics processing unit (GPU) microarchitecture developed by Nvidia as the successor to both the Volta and Turing architectures. It was officially announced on May 14, 2020 and is named after French mathematician and physicist André-Marie Ampère.[1][2]

Quick Facts Launched, Designed by ...

Nvidia announced the Ampere architecture GeForce 30 series consumer GPUs at a GeForce Special Event on September 1, 2020.[3][4] Nvidia announced the A100 80GB GPU at SC20 on November 16, 2020.[5] Mobile RTX graphics cards and the RTX 3060 based on the Ampere architecture were revealed on January 12, 2021.[6]

Nvidia announced Ampere's successor, Hopper, at GTC 2022, and "Ampere Next Next" (Blackwell) for a 2024 release at GPU Technology Conference 2021.

Details

Architectural improvements of the Ampere architecture include the following:

  • CUDA Compute Capability 8.0 for A100 and 8.6 for the GeForce 30 series[7]
  • TSMC's 7 nm FinFET process for A100
  • Custom version of Samsung's 8 nm process (8N) for the GeForce 30 series[8]
  • Third-generation Tensor Cores with FP16, bfloat16, TensorFloat-32 (TF32) and FP64 support and sparsity acceleration.[9] The individual Tensor cores have with 256 FP16 FMA operations per clock 4x processing power (GA100 only, 2x on GA10x) compared to previous Tensor Core generations; the Tensor Core Count is reduced to one per SM.
  • Second-generation ray tracing cores; concurrent ray tracing, shading, and compute for the GeForce 30 series
  • High Bandwidth Memory 2 (HBM2) on A100 40 GB & A100 80 GB
  • GDDR6X memory for GeForce RTX 3090, RTX 3080 Ti, RTX 3080, RTX 3070 Ti
  • Double FP32 cores per SM on GA10x GPUs
  • NVLink 3.0 with a 50 Gbit/s per pair throughput[9]
  • PCI Express 4.0 with SR-IOV support (SR-IOV is reserved only for A100)
  • Multi-instance GPU (MIG) virtualization and GPU partitioning feature in A100 supporting up to seven instances
  • PureVideo feature set K hardware video decoding with AV1 hardware decoding[10] for the GeForce 30 series and feature set J for A100
  • 5 NVDEC for A100
  • Adds new hardware-based 5-core JPEG decode (NVJPG) with YUV420, YUV422, YUV444, YUV400, RGBA. Should not be confused with Nvidia NVJPEG (GPU-accelerated library for JPEG encoding/decoding)

Chips

  • GA100[11]
  • GA102
  • GA103
  • GA104
  • GA106
  • GA107
  • GA10B

Comparison of Compute Capability: GP100 vs GV100 vs GA100[12]

More information GPU features, Nvidia Tesla P100 ...

Comparison of Precision Support Matrix[13][14]

More information FP16, FP32 ...

Legend:

  • FPnn: floating point with nn bits
  • INTn: integer with n bits
  • INT1: binary
  • TF32: TensorFloat32
  • BF16: bfloat16

Comparison of Decode Performance

More information H.264 decode (1080p30), H.265 (HEVC) decode (1080p30) ...

Ampere dies

More information Die, GA100 ...

A100 accelerator and DGX A100

The Ampere-based A100 accelerator was announced and released on May 14, 2020.[9] The A100 features 19.5 teraflops of FP32 performance, 6912 FP32/INT32 CUDA cores, 3456 FP64 CUDA cores, 40 GB of graphics memory, and 1.6 TB/s of graphics memory bandwidth.[22] The A100 accelerator was initially available only in the 3rd generation of DGX server, including 8 A100s.[9] Also included in the DGX A100 is 15 TB of PCIe gen 4 NVMe storage,[22] two 64-core AMD Rome 7742 CPUs, 1 TB of RAM, and Mellanox-powered HDR InfiniBand interconnect. The initial price for the DGX A100 was $199,000.[9]

Comparison of accelerators used in DGX:[23][24][25]

More information Model, Architecture ...

Products using Ampere

  • GeForce MX series
    • GeForce MX570 (mobile) (GA107)
  • GeForce 20 series
    • GeForce RTX 2050 (mobile) (GA107)
  • GeForce 30 series
    • GeForce RTX 3050 Laptop GPU (GA107)
    • GeForce RTX 3050 (GA106 or GA107)[26]
    • GeForce RTX 3050 Ti Laptop GPU (GA107)
    • GeForce RTX 3060 Laptop GPU (GA106)
    • GeForce RTX 3060 (GA106 or GA104)[27]
    • GeForce RTX 3060 Ti (GA104 or GA103)[28]
    • GeForce RTX 3070 Laptop GPU (GA104)
    • GeForce RTX 3070 (GA104)
    • GeForce RTX 3070 Ti Laptop GPU (GA104)
    • GeForce RTX 3070 Ti (GA104 or GA102)[29]
    • GeForce RTX 3080 Laptop GPU (GA104)
    • GeForce RTX 3080 (GA102)
    • GeForce RTX 3080 12 GB (GA102)
    • GeForce RTX 3080 Ti Laptop GPU (GA103)
    • GeForce RTX 3080 Ti (GA102)
    • GeForce RTX 3090 (GA102)
    • GeForce RTX 3090 Ti (GA102)
  • Nvidia Workstation GPUs (formerly Quadro)
    • RTX A1000 (mobile) (GA107)
    • RTX A2000 (mobile) (GA106)
    • RTX A2000 (GA106)
    • RTX A3000 (mobile) (GA104)
    • RTX A4000 (mobile) (GA104)
    • RTX A4000 (GA104)
    • RTX A5000 (mobile) (GA104)
    • RTX A5500 (mobile) (GA103)
    • RTX A4500 (GA102)
    • RTX A5000 (GA102)
    • RTX A5500 (GA102)
    • RTX A6000 (GA102)
  • Nvidia Data Center GPUs (formerly Tesla)
    • Nvidia A2 (GA107)
    • Nvidia A10 (GA102)
    • Nvidia A16 (4 × GA107)
    • Nvidia A30 (GA100)
    • Nvidia A40 (GA102)
    • Nvidia A100 (GA100)
    • Nvidia A100 80 GB (GA100)
  • Tegra SoCs
    • AGX Orin (GA10B)
    • Orin NX (GA10B)
    • Orin Nano (GA10B)
More information Type, GA10B ...

See also


References

  1. Newsroom, NVIDIA. "NVIDIA's New Ampere Data Center GPU in Full Production". NVIDIA Newsroom Newsroom.
  2. "NVIDIA Ampere Architecture In-Depth". NVIDIA Developer Blog. May 14, 2020.
  3. "NVIDIA Delivers Greatest-Ever Generational Leap with GeForce RTX 30 Series GPUs". Nvidia Newsroom. September 1, 2020. Retrieved April 9, 2023.
  4. "I.7. Compute Capability 8.x". Nvidia. Retrieved September 23, 2020.
  5. Bosnjak, Dominik (September 1, 2020). "Samsung's old 8nm tech at the heart of NVIDIA's monstrous Ampere cards". SamMobile. Retrieved September 19, 2020.
  6. Delgado, Gerardo (September 1, 2020). "GeForce RTX 30 Series GPUs: Ushering In A New Era of Video Content With AV1 Decode". Nvidia. Retrieved April 9, 2023.
  7. Morgan, Timothy Prickett (May 29, 2020). "Diving Deep Into The Nvidia Ampere GPU Architecture". The Next Platform. Retrieved March 24, 2022.
  8. "Abstract". docs.nvidia.com.
  9. "NVIDIA A100 Tensor Core GPU Architecture" (PDF). NVIDIA Corporation. Retrieved April 29, 2024.
  10. "NVIDIA GA102 GPU Specs". TechPowerUp. Retrieved April 29, 2024.
  11. "NVIDIA GA103 GPU Specs". TechPowerUp. Retrieved April 29, 2024.
  12. "NVIDIA GA104 GPU Specs". TechPowerUp. Retrieved April 29, 2024.
  13. "NVIDIA GA106 GPU Specs". TechPowerUp. Retrieved April 29, 2024.
  14. "NVIDIA GA107 GPU Specs". TechPowerUp. Retrieved April 29, 2024.
  15. "NVIDIA AGX Orin Series Technical Brief v1.2" (PDF). NVIDIA Corporation. Retrieved April 29, 2024.
  16. Tom Warren; James Vincent (May 14, 2020). "Nvidia's first Ampere GPU is designed for data centers and AI, not your PC". The Verge.
  17. Igor, Wallossek (February 13, 2022). "The two faces of the GeForce RTX 3050 8GB". Igor's Lab. Retrieved February 23, 2022.
  18. Shilov, Anton (September 25, 2021). "Gainward and Galax List GeForce RTX 3060 Cards With GA104 GPU". Tom's Hardware. Retrieved September 23, 2022.
  19. Tyson, Mark (February 23, 2022). "Zotac Debuts First RTX 3060 Ti Desktop Cards With GA103 GPU". Tom's Hardware. Retrieved September 23, 2022.
  20. WhyCry (October 26, 2022). "ZOTAC launches GeForce RTX 3070 Ti with GA102-150 GPU". VideoCardz. Retrieved May 21, 2023.

Share this article:

This article uses material from the Wikipedia article Nvidia_A100, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.