Radiative_transfer_model

Atmospheric radiative transfer codes

Atmospheric radiative transfer codes

Calculation of radiative transfer of atmospheric electromagnetic radiation


An atmospheric radiative transfer model, code, or simulator calculates radiative transfer of electromagnetic radiation through a planetary atmosphere.

Methods

At the core of a radiative transfer model lies the radiative transfer equation that is numerically solved using a solver such as a discrete ordinate method or a Monte Carlo method. The radiative transfer equation is a monochromatic equation to calculate radiance in a single layer of the Earth's atmosphere. To calculate the radiance for a spectral region with a finite width (e.g., to estimate the Earth's energy budget or simulate an instrument response), one has to integrate this over a band of frequencies (or wavelengths). The most exact way to do this is to loop through the frequencies of interest, and for each frequency, calculate the radiance at this frequency. For this, one needs to calculate the contribution of each spectral line for all molecules in the atmospheric layer; this is called a line-by-line calculation. For an instrument response, this is then convolved with the spectral response of the instrument.

A faster but more approximate method is a band transmission. Here, the transmission in a region in a band is characterised by a set of pre-calculated coefficients (depending on temperature and other parameters). In addition, models may consider scattering from molecules or particles, as well as polarisation; however, not all models do so.

Applications

Radiative transfer codes are used in broad range of applications. They are commonly used as forward models for the retrieval of geophysical parameters (such as temperature or humidity). Radiative transfer models are also used to optimize solar photovoltaic systems for renewable energy generation.[1] Another common field of application is in a weather or climate model, where the radiative forcing is calculated for greenhouse gases, aerosols, or clouds. In such applications, radiative transfer codes are often called radiation parameterization. In these applications, the radiative transfer codes are used in forward sense, i.e. on the basis of known properties of the atmosphere, one calculates heating rates, radiative fluxes, and radiances.

There are efforts for intercomparison of radiation codes. One such project was ICRCCM (Intercomparison of Radiation Codes in Climate Models) effort that spanned the late 1980s – early 2000s. The more current (2011) project, Continual Intercomparison of Radiation Codes, emphasises also using observations to define intercomparison cases. [2]

Table of models

More information Name, Website ...

Molecular absorption databases

For a line-by-line calculation, one needs characteristics of the spectral lines, such as the line centre, the intensity, the lower-state energy, the line width and the shape.

More information Name, Author ...

See also


References

Footnotes
  1. Andrews, Rob W.; Pearce, Joshua M. (2013). "The effect of spectral albedo on amorphous silicon and crystalline silicon solar photovoltaic device performance". Solar Energy. 91: 233–241. Bibcode:2013SoEn...91..233A. doi:10.1016/j.solener.2013.01.030.
  2. Kotchenova, S. Y.; Vermote, E. F.; Matarrese, R; Klemm, F. J. (2006). "Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path Radiance". Applied Optics. 45 (26): 6762–6774. Bibcode:2006ApOpt..45.6762K. CiteSeerX 10.1.1.488.9804. doi:10.1364/AO.45.006762. PMID 16926910.
  3. Eriksson, P.; Buehler, S. A.; Davis, C.P.; Emde, C.; Lemke, O. (2011). "ARTS, the atmospheric radiative transfer simulator, Version 2" (PDF). Journal of Quantitative Spectroscopy and Radiative Transfer. 112 (10): 1551–1558. Bibcode:2011JQSRT.112.1551E. doi:10.1016/j.jqsrt.2011.03.001. Retrieved 2016-11-02.
  4. Buehler, S. A.; Mendrok, J.; Eriksson, P.; Perrin, A.; Larsson, R.; Lemke, O. (2018). "ARTS, the atmospheric radiative transfer simulator — version 2.2, the planetary toolbox edition" (PDF). Geoscientific Model Development (GMD). 11 (4): 1537–1556. Bibcode:2018GMD....11.1537B. doi:10.5194/gmd-11-1537-2018. Retrieved 2023-01-16.
  5. Chapman, I. M.; Naylor, D. A.; Gom, B. G.; Querel, R. R.; Davis-Imhof, P. (2009). "BTRAM: An Interactive Atmospheric Radiative Transfer Model". The 30th Canadian Symposium on Remote Sensing. 30: 22–25.
  6. Jin, Z.; Charlock, T.P.; Rutledge, K.; Stamnes, K.; Wang, Y. (2006). "An analytical solution of radiative transfer in the coupled atmosphere-ocean system with rough surface". Appl. Opt. 45 (28): 7443–7455. Bibcode:2006ApOpt..45.7443J. doi:10.1364/AO.45.007443. hdl:2060/20080015519. PMID 16983433. S2CID 39305812.
  7. Gastellu-Etchegorry, JP; Demarez, V; Pinel, V; Zagolski, F (1996). "Modelling radiative transfer in heterogeneous 3-D vegetation canopies". Rem. Sens. Env. 58 (2): 131–156. Bibcode:1996RSEnv..58..131G. doi:10.1016/0034-4257(95)00253-7.
  8. Stamnes, Knut; Tsay, S. C.; Wiscombe, W.; Jayaweera, Kolf (1988). "Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media". Appl. Opt. 27 (12): 2502–2509. Bibcode:1988ApOpt..27.2502S. doi:10.1364/AO.27.002502. PMID 20531783.
  9. Lin, Zhenyi; Stamnes, S.; Jin, Z.; Laszlo, I.; Tsay, S. C.; Wiscombe, W. (2015). "Improved discrete ordinate solutions in the presence of an anisotropically reflecting lower boundary: Upgrades of the DISORT computational tool". Journal of Quantitative Spectroscopy and Radiative Transfer. 157 (12): 119–134. Bibcode:2015JQSRT.157..119L. doi:10.1016/j.jqsrt.2015.02.014. S2CID 119467744.
  10. Martin-Torres, F. J.; Kutepov, A.; Dudhia, A.; Gusev, O.; Feofilov, A.G. (2003). "Accurate and fast computation of the radiative transfer absorption rates for the infrared bands in the atmosphere of Titan". Geophysical Research Abstracts: 7735. Bibcode:2003EAEJA.....7735M.
  11. Edwards, D. P. (1992), GENLN2: A general line-by-line atmospheric transmittance and radiance model, Version 3.0 description and users guide, NCAR/TN-367-STR, National Center for Atmospheric Research, Boulder, Co.
  12. KARINE: a tool for infrared radiative transfer analysis in planetary atmospheres par V. Eymet. Note technique interne, Laboratoire d'Energétique, 2005.
  13. Clough, S. A.; Shephard, M. W.; Mlawer, E. J.; Delamere, J. S.; Iacono, M. J.; Cady-Pereira, K.; Boukabara, S.; Brown, P. D. (2005). "Atmospheric radiative transfer modeling: a summary of the AER codes". J. Quant. Spectrosc. Radiat. Transfer. 91 (2): 233–244. Bibcode:2005JQSRT..91..233C. doi:10.1016/j.jqsrt.2004.05.058. hdl:2027.42/142162.
  14. Fiorino, S. T.; Randall, R. M.; Via, M. F.; Burley, J. L. (2014). "Validation of a UV-to-RF High-Spectral-Resolution Atmospheric Boundary Layer Characterization Tool". J. Appl. Meteorol. Climatol. 53 (1): 136–156. Bibcode:2014JApMC..53..136F. doi:10.1175/JAMC-D-13-036.1.
  15. Gordley, L. L.; Marshall, B. T. (1994). "LINEPAK: Algorithm for Modeling Spectral Transmittance and Radiance". J. Quant. Spectrosc. Radiat. Transfer. 52 (5): 563–580. Bibcode:1994JQSRT..52..563G. CiteSeerX 10.1.1.371.5401. doi:10.1016/0022-4073(94)90025-6.
  16. Caillaut, K.; Fauqueux, S.; Bourlier, C.; Simoneau, P.; Labarre, L. (2007). "Multiresolution optical characteristics of rough sea surface in the infrared". Applied Optics. 46 (22): 5471–5481. Bibcode:2007ApOpt..46.5471C. doi:10.1364/AO.46.005471. PMID 17676164.
  17. "MCARaTS". sites.google.com. Retrieved 2016-04-01.
  18. Berk, A.; Bernstein, L. S.; Anderson, G. P.; Acharya, P. K.; Robertson, D. C.; Chetwynd, J. H.; Adler-Golden, S. M. (1998). "MODTRAN cloud and multiple scattering upgrades with application to AVIRIS". Remote Sensing of Environment. 65 (3): 367–375. Bibcode:1998RSEnv..65..367B. doi:10.1016/S0034-4257(98)00045-5.
  19. Cornette, William M. (2006). "Moderate Spectral Atmospheric Radiance and Transmittance (MOSART) Computer Code Version 2.00., Lexington, MA (2006)". Proc. IEEE-GRSS/AFRL Atmospheric Transmission Modeling Conference, Lexington MA.
  20. Wang, Zhen; Cui, Shengcheng; Yang, Jun; Gao, Haiyang; Liu, Chao; Zhang, Zhibo (2017). "A novel hybrid scattering order-dependent variance reduction method for monte carlo simulations of radiative transfer in cloudy atmosphere". Journal of Quantitative Spectroscopy and Radiative Transfer. 189: 283–302. Bibcode:2017JQSRT.189..283W. doi:10.1016/j.jqsrt.2016.12.002.
  21. Wang, Zhen; Cui, Shengcheng; Zhang, Zhibo; Yang, Jun; Gao, Haiyang; Zhang, Feng (2019). "Theoretical extension of universal forward and backward Monte Carlo radiative transfer modeling for passive and active polarization observation simulations". Journal of Quantitative Spectroscopy and Radiative Transfer. 235: 81–94. Bibcode:2019JQSRT.235...81W. doi:10.1016/j.jqsrt.2019.06.025.
  22. Batalha, Natasha E.; Marley, Mark S.; Lewis, Nikole K.; Fortney, Jonathan J. (2019-06-01). "Exoplanet Reflected-light Spectroscopy with PICASO". The Astrophysical Journal. 878 (1): 70. arXiv:1904.09355. Bibcode:2019ApJ...878...70B. doi:10.3847/1538-4357/ab1b51. ISSN 0004-637X. S2CID 128347336.
  23. Pannier, E.; Laux, C. (2019). "RADIS: A nonequilibrium line-by-line radiative code for CO2 and HITRAN-like database species" (PDF). Quantitative Spectroscopy and Radiative Transfer. 222–223: 12–25. Bibcode:2019JQSRT.222...12P. doi:10.1016/j.jqsrt.2018.09.027. S2CID 125474810.
  24. Mlawer, E. J.; Taubman, S. J.; Brown, P. D.; Iacono, M. J.; Claugh, S. A. (1997). "RRTM, a validated correlated-k model for the longwave". J. Geophys. Res. 102 (16): 663–682. Bibcode:1997JGR...10216663M. doi:10.1029/97JD00237. S2CID 54031652.
  25. Saunders, R. W.; Matricardi, M.; Brunel, P. (1999). "An Improved Fast Radiative Transfer Model for Assimilation of Satellite Radiance Observations". Quarterly Journal of the Royal Meteorological Society. 125 (556): 1407–1425. Bibcode:1999QJRMS.125.1407S. doi:10.1256/smsqj.55614.
  26. Bourassa, A.E.; Degenstein, D.A.; Llewellyn, E.J. (2008). "SASKTRAN: A spherical geometry radiative transfer code for efficient estimation of limb scattered sunlight". Journal of Quantitative Spectroscopy and Radiative Transfer. 109 (1): 52–73. Bibcode:2008JQSRT.109...52B. doi:10.1016/j.jqsrt.2007.07.007.
  27. Zawada, D. J.; Dueck, S. R.; Rieger, L. A.; Bourassa, A. E.; Lloyd, N. D.; Degenstein, D. A. (2015-06-26). "High-resolution and Monte Carlo additions to the SASKTRAN radiative transfer model". Atmos. Meas. Tech. 8 (6): 2609–2623. Bibcode:2015AMT.....8.2609Z. doi:10.5194/amt-8-2609-2015. ISSN 1867-8548.
  28. Rozanov, A.; Rozanov, V.; Buchwitz, M.; Kokhanovsky, A.; Burrows, J. P. (2005). "SCIATRAN 2.0-A new radiative transfer model for geophysical applications in the 175-2400 nm spectral region". Advances in Space Research. 36 (5): 1015–1019. Bibcode:2005AdSpR..36.1015R. doi:10.1016/j.asr.2005.03.012.
  29. Rozanov, V.; Rozanov, A.; Kokhanovsky, A.; Burrows, J. P. (2014). "Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN". Journal of Quantitative Spectroscopy and Radiative Transfer. 133: 13–71. Bibcode:2014JQSRT.133...13R. doi:10.1016/j.jqsrt.2013.07.004.
  30. Evans, K. F. (1998). "The spherical harmonics discrete ordinate method for three-dimensional atmospheric radiative transfer". Journal of the Atmospheric Sciences. 55 (3): 429–446. Bibcode:1998JAtS...55..429E. CiteSeerX 10.1.1.555.9038. doi:10.1175/1520-0469(1998)055<0429:TSHDOM>2.0.CO;2. S2CID 40027059.
  31. Amato, U.; Masiello, G.; Serio, C.; Viggiano, M. (2002). "The σ-IASI code for the calculation of infrared atmospheric radiance and its derivatives". Environmental Modelling & Software. 17 (7): 651–667. doi:10.1016/S1364-8152(02)00027-0.
  32. Liuzzi, G.; Masiello, G.; Serio, C.; Meloni, D.; Di Biagio, C.; Formenti, P. (2017). "Consistency of dimensional distributions and refractive indices of desert dust measured over Lampedusa with IASI radiances". Atmospheric Measurement Techniques. 10 (2): 599–615. Bibcode:2017AMT....10..599L. doi:10.5194/amt-10-599-2017. hdl:11563/125342.
  33. Ramon, D. (2019). "Modeling polarized radiative transfer in the ocean-atmosphere system with the GPU-accelerated SMART-G Monte Carlo code". Journal of Quantitative Spectroscopy and Radiative Transfer. 222–223: 89–107. Bibcode:2019JQSRT.222...89R. doi:10.1016/j.jqsrt.2018.10.017. S2CID 125121586.
  34. Key, J.; Schweiger, A. J. (1998). "Tools for atmospheric radiative transfer: Streamer and FluxNet". Computers & Geosciences. 24 (5): 443–451. Bibcode:1998CG.....24..443K. doi:10.1016/S0098-3004(97)00130-1. hdl:2060/19980018471. S2CID 118079586.
  35. |-->]
  36. Spurr, R.; Christi, M. (2019). The LIDORT and VLIDORT Linearized Scalar and Vector Discrete Ordinate Radiative Transfer Models. Springer Series in Light Scattering. pp. 1–62. doi:10.1007/978-3-030-03445-0_1. S2CID 126425750.
General
  • Bohren, Craig F. and Eugene E. Clothiaux, Fundamentals of atmospheric radiation: an introduction with 400 problems, Weinheim: Wiley-VCH, 2006, 472 p., ISBN 3-527-40503-8.
  • Goody, R. M. and Y. L. Yung, Atmospheric Radiation: Theoretical Basis. Oxford University Press, 1996 (Second Edition), 534 pages, ISBN 978-0-19-510291-8.
  • Liou, Kuo-Nan, An introduction to atmospheric radiation, Amsterdam; Boston: Academic Press, 2002, 583 p., International geophysics series, v.84, ISBN 0-12-451451-0.
  • Mobley, Curtis D., Light and water: radiative transfer in natural waters; based in part on collaborations with Rudolph W. Preisendorfer, San Diego, Academic Press, 1994, 592 p., ISBN 0-12-502750-8
  • Petty, Grant W, A first course in atmospheric radiation (2nd Ed.), Madison, Wisconsin: Sundog Pub., 2006, 472 p., ISBN 0-9729033-1-3
  • Preisendorfer, Rudolph W., Hydrologic optics, Honolulu, Hawaii: U.S. Dept. of Commerce, National Oceanic & Atmospheric Administration, Environmental Research Laboratories, Pacific Marine Environmental Laboratory, 1976, 6 volumes.
  • Stephens, Graeme L., Remote sensing of the lower atmosphere: an introduction, New York, Oxford University Press, 1994, 523 p. ISBN 0-19-508188-9.
  • Thomas, Gary E. and Knut Stamnes, Radiative transfer in the atmosphere and ocean, Cambridge, New York, Cambridge University Press, 1999, 517 p., ISBN 0-521-40124-0.
  • Zdunkowski, W., T. Trautmann, A. Bott, Radiation in the Atmosphere. Cambridge University Press, 2007, 496 pages, ISBN 978-0-521-87107-5

Share this article:

This article uses material from the Wikipedia article Radiative_transfer_model, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.