1947_Glazier–Higgins–Woodward_tornadoes

1947 Glazier–Higgins–Woodward tornado outbreak

1947 Glazier–Higgins–Woodward tornado outbreak

1947 windstorm through the U.S. states of Texas, Oklahoma, and Kansas


From April 9–11, 1947, a significant tornado outbreak produced catastrophic effects over portions of the southern Great Plains, in the contiguous United States. The outbreak generated at least 12, and possibly 17 or more, tornadoes, many of which were significant. On Wednesday, April 9, a series of related tornadoes spawned by a single supercell, dubbed the Glazier–Higgins–Woodward tornadoes, swept through the U.S. states of Texas, Oklahoma, and Kansas. Most of the damage and all the deaths are still blamed on one large tornado, known as the Glazier–Higgins–Woodward tornado, that traveled 98 mi (158 km) from Texas to Oklahoma, beginning over the South Plains. This event, up to nearly 2 mi (3.2 km) in width, was often compared to the Tri-State tornado, because it was originally thought to have left a 198-to-221-mile-long (319 to 356 km) path, was similarly large and intense for much of its path, and was also retroactively rated F5 on the modern-day Fujita scale, but it is now believed to have been part of a 125-to-170-mile-long (201 to 274 km) family of nine or 10 tornadoes.[nb 1]

Quick Facts Tornado outbreak, Tornadoes ...

Background

Early on April 9, the United States Weather Bureau in Amarillo, Texas, forecast late-afternoon temperatures of about 60 °F (16 °C) over the Texas panhandle. At the time, dense, low-lying stratus and a layer of fog were present, with temperatures ranging from the upper 40s to low 50s °F. However, an approaching warm front—then extended from Sherman, Texas, to Raton, New Mexico—would later combine with a robust trough aloft to enhance conditions for severe weather. In tandem with this, a low-pressure area over northeastern New Mexico, along with an attendant dry line, would gradually eject, leading to stronger low-level wind shear and more pronounced lapse rates. Around 2:00 p.m. CST (18:00 UTC), helicity was near 135 m2/s2, but would decline afterward. As it did so, however, an unexpected decrease in cloud cover allowed for greater-than-expected diurnal heating, leading to a substantial rise in atmospheric instability and associated buoyancy.[2] By 6:30 p.m. CST (00:30 UTC), the low-pressure center was situated over southern Colorado, and a 53-to-61-mile-per-hour (85 to 98 km/h) jet stream existed 4,000 to 7,000 ft (1,200 to 2,100 m; 1.2 to 2.1 km) above sea level.[3] Surface-based temperatures quickly reached the upper 60s °F. In the mixed layer, the convective available potential energy (CAPE) rose above 1,100 j/kg, and the lifted condensation level (LCL) was just 752 m (0.752 km) above ground level, along with a level of free convection (LFC) of 1,410 m (1.41 km). Mixed-layer convective inhibition by then had decreased, offsetting the loss of helicity, and the presence of the warm front acted in concert with the aforementioned factors to favor supercells capable of generating strong tornadoes.[2] Gusts of 30 to 40 mph (48 to 64 km/h) attended the passage of a cold front overnight.[3]

Confirmed tornadoes

More information FU, F0 ...

Prior to 1990, there is a likely undercount of tornadoes, particularly E/F0–1, with reports of weaker tornadoes becoming more common as population increased. A sharp increase in the annual average E/F0–1 count by approximately 200 tornadoes was noted upon the implementation of NEXRAD Doppler weather radar in 1990–1991.[5][nb 2] 1974 marked the first year where significant tornado (E/F2+) counts became homogenous with contemporary values, attributed to the consistent implementation of Fujita scale assessments.[9][nb 3] Numerous discrepancies on the details of tornadoes in this outbreak exist between sources. The total count of tornadoes and ratings differs from various agencies accordingly. The list below documents information from the most contemporary official sources alongside assessments from tornado historian Thomas P. Grazulis.

More information F#, Location ...

Glazier–Higgins, Texas/Woodward, Oklahoma

Quick Facts F5 tornado, Overall effects ...

Moving at an average of 42 to 50 mph (68 to 80 km/h), this extremely large and violent tornado was first confirmed near Canadian, Texas. When it struck the tiny town of Glazier, it may have been as much as two miles (3.2 km) wide. Most structures in town were swept completely away and scattered. Vehicles in the area were thrown hundreds of yards and mangled, shrubbery was debarked, and ground scouring occurred. Glazier was considered completely destroyed, with 17 dead, a major percentage of the populace. Press reports told of two people who were known to be together in Glazier before the tornado struck were found three miles (4.8 km) apart afterward. The tornado maintained its intensity as it slammed into Higgins, on the Texas–Oklahoma border, which was also devastated. The accepted death toll here was 51; again, a major fraction of the residents of the town were killed or injured. Much of downtown Higgins was completely demolished, and entire rows of homes were swept away. At one residence, a 4+12-tonne (4,500 kg) lathe was reportedly ripped from its anchors and broken in half.

After killing at least one other person, the tornado crossed the state line and entered Oklahoma. There the tornado was at its worst—the deadliest storm in that state's tornado-troubled history. Six more people were killed when the tornado swept away about 60 ranches and farms south of Shattuck, Gage, and Fargo. During its trek, the funnel was so wide and low to the ground that it did not resemble a prototypical tornado. The tornado then moved into Woodward, where it devastated the town and killed an estimated 107 people. The damage that occurred in Woodward was catastrophic. There, the tornado was 1.8 mi (2.9 km) wide and destroyed 100 city blocks. Many homes and businesses were leveled or swept away, and as the tornado struck the town's power plant, a 20-tonne (20,000 kg) steel boiler tank was lofted and thrown a block and a half. Large trees sustained severe debarking as well. The tornado finally dissipated in Woods County, west of Alva, where it wrecked 36 homes and injured 30 people.

Cleanup in the region was made more difficult because of cold and snow that followed the tornado. Four-year-old Joan Gay Croft and her sister Jerri were among refugees taking shelter in a basement hallway of the Woodward hospital. As officials sent the injured to different hospitals in the area, two men took Joan away, saying they were taking her to Oklahoma City. She was never seen again. Over the years, several women have come forth saying they suspect they might be Joan, although none of the claims have been verified. She is likely deceased. The Glazier–Higgins–Woodward tornado was the sixth deadliest in U.S. history, killing 184 and injuring 980; of these figures, 116 deaths and 782 injuries occurred in Oklahoma. An undetermined number of additional fatalities may have occurred in both states affected. In all, the tornado destroyed 626 homes and damaged 920 others, becoming the costliest on record in Oklahoma history.[24]

Aftermath and recovery

A US Weather Bureau report on the Woodward, Oklahoma Tornado of April 9, 1947, gives the following figures on the damage caused in its "Original Summary" section.

  • Lipscomb County, Texas – 36 homes flattened, 1 damaged
  • Hemphill County, Texas – 83 homes leveled, 116 damaged
  • Texas total – $1,505,000
  • Ellis County, Oklahoma – $1,264,000
    • 52 homes destroyed, 133 damaged
    • 223 other buildings destroyed, 107 damaged
  • Woodward County, Oklahoma – $6,608,750
    • 430 homes destroyed, 650 damaged
    • 925 other buildings destroyed, 975 damaged
  • Woods County, Oklahoma – $950,000
    • 25 homes destroyed, 34 damaged
    • 110 other buildings destroyed, 90 damaged
  • Kansas total – $200,000

Total damage estimates were $173,489,564 (equivalent to $747,850,050 in 2008 dollars).[29][better source needed]

See also

Notes

  1. An outbreak is generally defined as a group of at least six tornadoes (the number sometimes varies slightly according to local climatology) with no more than a six-hour gap between individual tornadoes. An outbreak sequence, prior to (after) the start of modern records in 1950, is defined as a period of no more than two (one) consecutive days without at least one significant (F2 or stronger) tornado.[1]
  2. Historically, the number of tornadoes globally and in the United States was and is likely underrepresented: research by Grazulis on annual tornado activity suggests that, as of 2001, only 53% of yearly U.S. tornadoes were officially recorded. Documentation of tornadoes outside the United States was historically less exhaustive, owing to the lack of monitors in many nations and, in some cases, to internal political controls on public information.[6] Most countries only recorded tornadoes that produced severe damage or loss of life.[7] Significant low biases in U.S. tornado counts likely occurred through the early 1990s, when advanced NEXRAD was first installed and the National Weather Service began comprehensively verifying tornado occurrences.[8]
  3. The Fujita scale was devised under the aegis of scientist T. Theodore Fujita in the early 1970s. Prior to the advent of the scale in 1971, tornadoes in the United States were officially unrated.[10][11] Tornado ratings were retroactively applied to events prior to the formal adoption of the F-scale by the National Weather Service.[12] While the Fujita scale has been superseded by the Enhanced Fujita scale in the U.S. since February 1, 2007,[13] Canada used the old scale until April 1, 2013;[14] nations elsewhere, like the United Kingdom, apply other classifications such as the TORRO scale.[15]
  4. All dates are based on the local time zone where the tornado touched down; however, all times are in Coordinated Universal Time and dates are split at midnight CST/CDT for consistency.
  5. The listed width values are primarily the average/mean width of the tornadoes, with those having known maximum widths denoted by ♯. From 1952 to 1994, reports largely list mean width whereas contemporary years list maximum width.[16] Values provided by Grazulis are the average width, with estimates being rounded down (i.e. 0.5 mi (0.80 km) is rounded down from 880 yards to 800 yards.[17][18]
  6. All losses are in 1947 USD unless otherwise noted.

References

  1. Schneider, Russell S.; Brooks, Harold E.; Schaefer, Joseph T. (2004). Tornado Outbreak Day Sequences: Historic Events and Climatology (1875–2003) (PDF). 22nd Conf. Severe Local Storms. Hyannis, Massachusetts: American Meteorological Society. Retrieved September 17, 2019.
  2. Jackson, Justyn; Kendrick, Brady; Spencer, Trent. "The Panhandles' Only F5: Reconstructing the April 9, 1947 Higgins-Glazier Tornado". Amarillo, TX Weather Forecast Office. Amarillo, Texas: National Weather Service. Retrieved 8 March 2024.
  3. Burgess, Donald W. "The Woodward Tornado of 9 April 1947". Norman, OK Weather Forecast Office. Norman, Oklahoma: National Weather Service. Retrieved 8 March 2024.
  4. Edwards, Roger (March 5, 2015). "The Online Tornado FAQ (by Roger Edwards, SPC)". Storm Prediction Center: Frequently Asked Questions about Tornadoes. Storm Prediction Center. Retrieved February 25, 2016.
  5. Agee and Childs 2014, pp. 1497, 1503.
  6. Edwards et al. 2013, p. 641–642.
  7. Edwards, Roger (March 5, 2015). "Enhanced F Scale for Tornado Damage". The Online Tornado FAQ (by Roger Edwards, SPC). Storm Prediction Center. Retrieved February 25, 2016.
  8. "Enhanced Fujita Scale (EF-Scale)". Environment and Climate Change Canada. Environment and Climate Change Canada. June 6, 2013. Archived from the original on March 3, 2016. Retrieved February 25, 2016.
  9. "The International Tornado Intensity Scale". Tornado and Storm Research Organisation. Tornado and Storm Research Organisation. 2016. Archived from the original on March 5, 2016. Retrieved February 25, 2016.
  10. Brooks 2004, p. 310.
  11. "Higgins, Woodward Set Afire; Train is Blown off Tracks". The Amarillo Daily News. Amarillo, Texas. April 10, 1947.
  12. "Storm Sounds Like Freight Train as It Strikes Town". El Paso Herald-Post. El Paso, Texas. April 10, 1947.
  13. Multiple sources:
  14. "F5/EF-5 Tornadoes in Oklahoma (1905-Present)". Norman, OK Weather Forecast Office. Norman, Oklahoma: National Weather Service. Retrieved 11 February 2024.

Sources


Share this article:

This article uses material from the Wikipedia article 1947_Glazier–Higgins–Woodward_tornadoes, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.