2018_AG37

<span class="nowrap">2018 AG<sub>37</sub></span>

2018 AG37

Trans-Neptunian object @ 132AU


2018 AG37 is a distant trans-Neptunian object and centaur that was discovered 132.2 ± 1.5 AU (19.78 ± 0.22 billion km) from the Sun,[8] farther than any other currently observable known object in the Solar System.[3][9] Imaged in January 2018 during a search for the hypothetical Planet Nine,[10] the confirmation of this object was announced in a press release in February 2021 by astronomers Scott Sheppard, David Tholen, and Chad Trujillo. The object was nicknamed "FarFarOut" to emphasize its distance from the Sun.[3]

Quick Facts Discovery, Discovered by ...

At a very faint apparent magnitude of 25, only the largest telescopes in the world can observe it.[1] Being so far from the Sun, 2018 AG37 moves very slowly among the background stars and has been observed only nine times in the first two years.[5] It requires an observation arc of several years to refine the uncertainties in the approximately 700-year orbital period and determine whether it is currently near or at aphelion (farthest distance from the Sun). JPL Horizons computes an aphelion around the year 2005 at about 133 AU,[11] whereas Project Pluto computes aphelion around the year 1976 slightly further out at 134 AU.[12] Its perihelion is a little less than Neptune's.

Discovery

2018 AG37 was first imaged on 15 January 2018 by astronomers Scott Sheppard, David Tholen, and Chad Trujillo when they were surveying the sky using the large 8.2-meter Subaru Telescope at Mauna Kea Observatory, Hawaii, to find distant Solar System objects and the hypothetical Planet Nine, whose existence they proposed in 2014.[1][10] However, it was not noticed until January 2019, when Sheppard decided to review the Subaru images taken in 2018 after having an upcoming lecture delayed by weather.[10][13] In two of these images taken one day apart in January, he identified a very faint apparent magnitude 25.3 object that moved slowly relative to the background stars and galaxies.[1] Based on two positions of 2018 AG37 in those images, Sheppard estimated its distance was roughly around 140 astronomical units (AU), farther than 2018 VG18 which was discovered and announced by his team one month earlier in December 2018.[13]

In his rescheduled talk on 21 February 2019, Sheppard remarked on his discovery of 2018 AG37, which he jokingly nicknamed "FarFarOut" as a succession to the nickname "Farout" used for the previous farthest object 2018 VG18.[13] Following 2018 AG37's discovery, Sheppard reobserved the object in March 2019 with the 6.5-meter Magellan-Baade telescope at Las Campanas Observatory, Chile. Additional observations were then made in May 2019 and January 2020 with the Subaru Telescope at Mauna Kea.[1]

These observations over a two-year period established a tentative orbit solution for 2018 AG37, permitting it to be confirmed and announced by the Minor Planet Center.[14] The confirmation of 2018 AG37 was formally announced in a press release by the Carnegie Institution for Science on 10 February 2021.[3]

Name

The object was nicknamed "FarFarOut" for its distant location from the Sun, and particularly because it was even farther than the previous farthest known object 2018 VG18 which was nicknamed "Farout".[3] It is officially known by the provisional designation 2018 AG37 given by the Minor Planet Center when the discovery was announced.[1] The provisional designation indicates the object's discovery date, with the first letter representing the first half of January and the succeeding letter and numbers indicating that it is the 932nd object discovered during that half-month.[lower-alpha 2]

The object has not yet been assigned an official minor planet number by the Minor Planet Center due to its short observation arc and high orbital uncertainty.[2] 2018 AG37 will be given a minor planet number when its orbit is well-secured by observations over multiple opposition and will become eligible for naming by its discoverers after it is numbered with a well-defined orbit.[14][16]

Orbit

Distribution of trans-Neptunian objects. Objects classified as centaurs are shown in green (2018 AG37 highlighted).

As of 2021, 2018 AG37 has only been observed nine times over an observation arc of two years.[2] Being so far from the Sun, 2018 AG37 moves so slowly that two years of observations have not adequately determined its orbit.[3] The nominal orbit is highly uncertain with a condition code of 9.[2] Several years of additional observations are necessary to refine the orbital uncertainties.[3][16] It comes to opposition each January.[8]

Only 2018 AG37's distance and orbital elements that define its position (inclination and longitude of the ascending node) have been adequately determined by its two-year observation arc.[5] The orbital elements that define the shape and motion of 2018 AG37's orbit (eccentricity, mean anomaly, etc.) are poorly determined because its observation arc does not provide sufficient coverage of its wide-ranging orbit, especially when it moves very slowly due to its large distance.[5] The nominal best-fit orbit solution provided by the Jet Propulsion Laboratory (JPL) Small-Body Database gives an orbital semi-major axis of 80.2±4.5 AU and an eccentricity of 0.655±0.02, corresponding to a perihelion and aphelion distance of 27.6±0.2 AU and 133±7 AU, respectively.[2][5] The orbital period of 2018 AG37 is poorly known, but it probably lies around 700 years.[5][3]

Given the uncertainty of 2018 AG37's nominal perihelion distance, it likely crosses Neptune's orbit (30.1 AU) with a nominal minimum orbit intersection distance (MOID) around 3 AU (450 million km; 280 million mi).[2] 2018 AG37's small perihelion distance and elongated orbit implies that it has experienced strong gravitational interactions with Neptune in past close encounters.[3] Other trans-Neptunian objects are known to have been scattered onto similarly distant and elongated orbits by Neptune—these are collectively known as scattered disc objects.[4]

Distance

Diagram of 2018 AG37's orbit

The object was initially estimated to be roughly 140 AU (21 billion km) from the Sun, but this estimate was uncertain due to the very short initial observation arc. When it was announced in February 2021, 2018 AG37 had an observation arc of two years. Based on this, it was 132.2 ± 1.5 AU (19.78 ± 0.22 billion km) from the Sun at the time of its discovery on 15 January 2018.[8] As of January 2024, it is the farthest observed object in the Solar System.[3]

However, over a hundred trans-Neptunian objects are known to have aphelion distances that bring them farther from the Sun than 2018 AG37[17] and many near-parabolic comets are currently much farther from the Sun. Comet Donati (C/1858 L1) is over 145 AU (22 billion km),[18] and Caesar's Comet (C/-43 K1) is calculated to be more than 800 AU (120 billion km) from the Sun.[19] However, none of these more distant objects are currently observable even with the most powerful telescopes.

Physical characteristics

This illustration imagines what the distant object nicknamed "FarFarOut" might look like in the outer reaches of the Solar System

Based on 2018 AG37's apparent brightness and projected distance, the Minor Planet Center calculates an absolute magnitude of 4.2.[2] It is listed by the Minor Planet Center as the 12th intrinsically brightest known scattered disc object.[4]

The size of 2018 AG37 is unmeasured, but it likely lies between 400–600 km (250–370 mi) in diameter assuming a geometric albedo range of 0.10–0.25.[20] Sheppard estimates that 2018 AG37's diameter lies at the lower end of this range, as he concludes that it has a highly reflective and ice-rich surface.[3] Johnston assumes a dark albedo of 0.057 and a larger diameter of 797 kilometres (495 mi), and classifies 2018 AG37 as a centaur. If correct, that would make it the largest known centaur.[6]

See also

Notes

  1. Statistics of small numbers and random observational errors cause the orbital elements to be very poorly constrained and the uncertainties are so large and non-linear that these error bars are not really meaningful and just show that the uncertainties are large. For example the JPL SBDB uncertainty in the perihelion date is 408 years (1-sigma) or 1224 years (3-sigma).
  2. In the convention for minor planet provisional designations, the first letter represents the half-month of the year of discovery while the second letter and numbers indicate the order of discovery within that half-month. For 2018 AG37, the first letter 'A' corresponds to the first half-month of January 2018 while the succeeding letter 'G' indicates that it is the 7th object discovered on the 37th cycle of discoveries. Each completed cycle consists of 25 letters representing discoveries, hence 7 + (37 completed cycles × 25 letters) = 932.[15]

References

  1. "MPEC 2021-C187 : 2018 AG37". Minor Planet Electronic Circular. Minor Planet Center. 10 February 2021. Retrieved 10 February 2021.
  2. "2018 AG37". Minor Planet Center. International Astronomical Union. Retrieved 10 February 2021.
  3. "Solar System's Most Distant Known Member Confirmed". Carnegie Science. 10 February 2021. Retrieved 10 February 2021.
  4. "List Of Centaurs and Scattered-Disk Objects". Minor Planet Center. Retrieved 14 February 2021.
  5. "JPL Small-Body Database Browser: (2018 AG37)" (2020-01-25 last obs.). Jet Propulsion Laboratory. Archived from the original on 10 February 2021. Retrieved 7 August 2021.
  6. "List of Known Trans-Neptunian Objects". Johnston's Archive. 23 July 2023. Retrieved 23 July 2023.
  7. "JPL Horizons On-Line Ephemeris for 2018 AG37". JPL Horizons On-Line Ephemeris System. Jet Propulsion Laboratory. Retrieved 10 February 2021. Ephemeris Type: VECTORS, Target Body: Asteroid (2018 AG37), Coordinate Origin: Sun (body center) [500@10], Time Span: Start=2018-01-15, Table Settings: quantities code=2p
  8. "Horizons Batch for (2018 AG37) around 2005 (1 month stepsize)" (Aphelion occurs when rdot flips from positive to negative). JPL Horizons. Retrieved 21 September 2021. (JPL#5/Soln.date: 2021-Aug-24)
  9. "Project Pluto Ephemeris" (column r is distance from the Sun). Project Pluto. Archived from the original on 15 September 2023. Retrieved 15 September 2023.
  10. "How Are Minor Planets Named?". Minor Planet Center. Retrieved 13 February 2021.
  11. "New- And Old-Style Minor Planet Designations". Minor Planet Center. Retrieved 13 February 2021.
  12. "JPL Horizons On-Line Ephemeris for C/1858 L1 (Donati)". JPL Horizons On-Line Ephemeris System. Jet Propulsion Laboratory. Retrieved 5 March 2019. Ephemeris Type: VECTORS, Target Body: Comet C/1858 L1 (Donati), Coordinate Origin: Sun (body center) [500@10], Table Settings: quantities code=2p
  13. "JPL Horizons On-Line Ephemeris for C/-43K1". JPL Horizons On-Line Ephemeris System. Jet Propulsion Laboratory. Retrieved 5 March 2019. Ephemeris Type: VECTORS, Target Body: Comet C/-43 K1, Coordinate Origin: Sun (body center) [500@10], Table Settings: quantities code=2p
  14. Bruton, Dan. "Conversion of Absolute Magnitude to Diameter for Minor Planets". Department of Physics, Engineering, and Astronomy. Stephen F. Austin State University. Archived from the original on 23 July 2011. Retrieved 15 February 2021.

Share this article:

This article uses material from the Wikipedia article 2018_AG37, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.