2411_(number)

2000 (number)

2000 (number)

Natural number


2000 (two thousand) is a natural number following 1999 and preceding 2001.

Quick Facts ← 1999 2000 2001 →, Cardinal ...

It is:

Selected numbers in the range 2001–2999

2001 to 2099

2100 to 2199

2200 to 2299

2300 to 2399

2400 to 2499

2500 to 2599

  • 2500 = 502, palindromic in base 7 (102017)
  • 2501 – Mertens function zero
  • 2502 – Mertens function zero
  • 2503 – Friedman prime
  • 2510 – member of the Mian–Chowla sequence[21]
  • 2513 – member of the Padovan sequence[61]
  • 2517 – Mertens function zero
  • 2519 – the smallest number congruent to 1 (mod 2), 2 (mod 3), 3 (mod 4), ..., 9 (mod 10)
  • 2520superior highly composite number; smallest number divisible by numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 12; colossally abundant number; Harshad number in several bases. It is also the highest number with more divisors than any number less than double itself (sequence A072938 in the OEIS). Not only it is the 7th (and last) number with more divisors than any number double itself but is also the 7th number that is highly composite and the lowest common multiple of a consecutive set of integers from 1 (sequence A095921 in the OEIS) which is a property the previous number with this pattern of divisors does not have (360). That is, although 360 and 2520 both have more divisors than any number twice themselves, 2520 is the lowest number divisible by both 1 to 9 and 1 to 10, whereas 360 is not the lowest number divisible by 1 to 6 (which 60 is) and is not divisible by 1 to 7 (which 420 is). It is also the 6th and largest highly composite number that is a divisor of every higher highly composite number (sequence A106037 in the OEIS).
  • 2521star prime, centered square number[34]
  • 2522 – Mertens function zero
  • 2523 – Mertens function zero
  • 2524 – Mertens function zero
  • 2525 – Mertens function zero
  • 2530 – Mertens function zero, Leyland number[37]
  • 2533 – Mertens function zero
  • 2537 – Mertens function zero
  • 2538 – Mertens function zero
  • 2543Sophie Germain prime, sexy prime with 2549
  • 2549Sophie Germain prime, super-prime, sexy prime with 2543
  • 2550 – pronic number[29]
  • 2552 – sum of the totient function for the first 91 integers
  • 2556 – triangular number
  • 2567 – Mertens function zero
  • 2568 – Mertens function zero, number of digits in the decimal expansion of 1000!, or the product of all natural numbers from 1 to 1000
  • 2570 – Mertens function zero
  • 2579safe prime[20]
  • 2580Keith number,[47] forms a column on a telephone or PIN pad
  • 2584Fibonacci number,[62] sum of the first 37 primes
  • 25923-smooth number (25×34)
  • 2596 – sum of the totient function for the first 92 integers

2600 to 2699

2700 to 2799

  • 2701 – triangular number, super-Poulet number[24]
  • 2702 – sum of the totient function for the first 94 integers
  • 2704 = 522
  • 2707 – model number for the concept supersonic airliner Boeing 2707
  • 2719super-prime, largest known odd number which cannot be expressed in the form x2 + y2 + 10z2 where x, y and z are integers.[63] In 1997 it was conjectured that this is also the largest such odd number.[64] It is now[when?] known this is true if the generalized Riemann hypothesis is true.[65]
  • 2728Kaprekar number[48]
  • 2729 – highly cototient number[30]
  • 2731 – the only Wagstaff prime with four digits,[66] Jacobsthal prime
  • 2736 – octahedral number[49]
  • 2741Sophie Germain prime, 400th prime number
  • 2744 = 143, palindromic in base 13 (133113)
  • 2747 – sum of the first 38 primes
  • 2749super-prime, cousin prime with 2753
  • 2753Sophie Germain prime, Proth prime[33]
  • 2756 – pronic number[29]
  • 2774 – sum of the totient function for the first 95 integers
  • 2775 – triangular number
  • 2780 – member of the Mian–Chowla sequence[21]
  • 2783 – member of a Ruth–Aaron pair with 2784 (first definition)
  • 2784 – member of a Ruth–Aaron pair with 2783 (first definition)
  • 2791 – cuban prime[50]

2800 to 2899

2900 to 2999

Prime numbers

There are 127 prime numbers between 2000 and 3000:[76][77]

2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999

References

  1. Sloane, N. J. A. (ed.). "Sequence A052486 (Achilles numbers - powerful but imperfect: if n = Product(p_i^e_i) then all e_i > 1 (i.e., powerful), but the highest common factor of the e_i is 1, i.e., not a perfect power)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. "Can you solve it? 2019 in numbers". the Guardian. 2018-12-31. Retrieved 2021-09-19.
  3. Mackenzie, Dana (2018). "2184: An Absurd (and Adsurd) Tale". Integers. 18.
  4. "The Small Groups library". Archived from the original on 2007-02-04. Retrieved 2008-01-22..
  5. "Odd numbers that are not of the form x^2+y^2+10*z^2.". The Online Encyclopedia of Integer Sequences. The OEIS Foundation, Inc. Retrieved 13 November 2012.
  6. Ono, Ken (1997). "Ramanujan, taxicabs, birthdates, zipcodes and twists" (PDF). American Mathematical Monthly. 104 (10): 912–917. CiteSeerX 10.1.1.514.8070. doi:10.2307/2974471. JSTOR 2974471. Archived from the original (PDF) on 15 October 2015. Retrieved 11 November 2012.
  7. Ono, Ken; K Soundararajan (1997). "Ramanujan's ternary quadratic forms" (PDF). Inventiones Mathematicae. 130 (3): 415–454. Bibcode:1997InMat.130..415O. CiteSeerX 10.1.1.585.8840. doi:10.1007/s002220050191. S2CID 122314044. Archived from the original (PDF) on 18 July 2019. Retrieved 12 November 2012.
  8. Pandharipande, Rahul (1998), "Rational curves on hypersurfaces (after A. Givental)", Astérisque, 1997/98 (252): 307–340, arXiv:math/9806133, Bibcode:1998math......6133P, MR 1685628
  9. Stein, William A. (10 February 2017). "The Riemann Hypothesis and The Birch and Swinnerton-Dyer Conjecture". wstein.org. Retrieved 6 February 2021.

Share this article:

This article uses material from the Wikipedia article 2411_(number), and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.