541_(number)

500 (number)

500 (number)

Natural number


500 (five hundred) is the natural number following 499 and preceding 501.

Quick Facts ← 499 500 501 →, Cardinal ...

Mathematical properties

500 = 22 × 53. It is an Achilles number and an Harshad number, meaning it is divisible by the sum of its digits. It is the number of planar partitions of 10.[1]

Other fields

Five hundred is also

Slang names

  • Monkey (UK slang for £500; US slang for $500)[2]

Integers from 501 to 599

500s

501

501 = 3 × 167. It is:

  • the sum of the first 18 primes (a term of the sequence OEIS: A007504).
  • palindromic in bases 9 (6169) and 20 (15120).

502

  • 502 = 2 × 251
  • vertically symmetric number (sequence A053701 in the OEIS)

503

503 is:

504

504 = 23 × 32 × 7. It is:

is prime[11]

505

506

506 = 2 × 11 × 23. It is:

is a prime number. Its decimal expansion is 252 nines, an eight, and 253 more nines.

507

  • 507 = 3 × 132 = 232 - 23 + 1, which makes it a central polygonal number[15]
    • The age Ming had before dying.

508

  • 508 = 22 × 127, sum of four consecutive primes (113 + 127 + 131 + 137), number of graphical forest partitions of 30,[16] since 508 = 222 + 22 + 2 it is the maximum number of regions into which 23 intersecting circles divide the plane.[17]

509

509 is:

510s

510

510 = 2 × 3 × 5 × 17. It is:

  • the sum of eight consecutive primes (47 + 53 + 59 + 61 + 67 + 71 + 73 + 79).
  • the sum of ten consecutive primes (31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71).
  • the sum of twelve consecutive primes (19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67).
  • a nontotient.
  • a sparsely totient number.[19]
  • a Harshad number.
  • the number of nonempty proper subsets of an 9-element set.[20]

511

511 = 7 × 73. It is:

512

512 = 83 = 29. It is:

513

513 = 33 × 19. It is:

514

514 = 2 × 257, it is:

515

515 = 5 × 103, it is:

  • the sum of nine consecutive primes (41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73).
  • the number of complete compositions of 11.[23]

516

516 = 22 × 3 × 43, it is:

517

517 = 11 × 47, it is:

  • the sum of five consecutive primes (97 + 101 + 103 + 107 + 109).
  • a Smith number.[25]

518

518 = 2 × 7 × 37, it is:

  • = 51 + 12 + 83 (a property shared with 175 and 598).
  • a sphenic number.
  • a nontotient.
  • an untouchable number.[24]
  • palindromic and a repdigit in bases 6 (22226) and 36 (EE36).
  • a Harshad number.

519

519 = 3 × 173, it is:

  • the sum of three consecutive primes (167 + 173 + 179)
  • palindromic in bases 9 (6369) and 12 (37312)
  • a D-number.[26]

520s

520

520 = 23 × 5 × 13. It is:

521

521 is:

  • a Lucas prime.[27]
  • A Mersenne exponent, i.e. 2521−1 is prime.
  • a Chen prime.
  • an Eisenstein prime with no imaginary part.
  • palindromic in bases 11 (43411) and 20 (16120).

4521 - 3521 is prime

522

522 = 2 × 32 × 29. It is:

  • the sum of six consecutive primes (73 + 79 + 83 + 89 + 97 + 101).
  • a repdigit in bases 28 (II28) and 57 (9957).
  • a Harshad number.
  • number of series-parallel networks with 8 unlabeled edges.[29]

523

523 is:

  • a prime number.
  • the sum of seven consecutive primes (61 + 67 + 71 + 73 + 79 + 83 + 89).
  • palindromic in bases 13 (31313) and 18 (1B118).
  • a prime with a prime number of prime digits[30]
  • the smallest prime number that starts a prime gap of length greater than 14

524

524 = 22 × 131

  • number of partitions of 44 into powers of 2[31]

525

525 = 3 × 52 × 7. It is palindromic in base ten, as well as the fifty-fifth self number greater than 1 in decimal.[32] It is also:

525 is the number of scan lines in the NTSC television standard.

526

526 = 2 × 263, centered pentagonal number,[35] nontotient, Smith number[25]

527

527 = 17 × 31. it is:

  • palindromic in base 15 (25215)
  • number of diagonals in a 34-gon[36]
  • also, the section of the US Tax Code regulating soft money political campaigning (see 527 groups)

528

528 = 24 × 3 × 11. It is:

529

529 = 232. It is:

530s

530

530 = 2 × 5 × 53. It is:

531

531 = 32 × 59. It is:

  • palindromic in base 12 (38312).
  • a Harshad number.
  • number of symmetric matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to 6[38]

532

532 = 22 × 7 × 19. It is:

533

533 = 13 × 41. It is:

  • the sum of three consecutive primes (173 + 179 + 181).
  • the sum of five consecutive primes (101 + 103 + 107 + 109 + 113).
  • palindromic in base 19 (19119).
  • generalized octagonal number.[40]

534

534 = 2 × 3 × 89. It is:

  • a sphenic number.
  • the sum of four consecutive primes (127 + 131 + 137 + 139).
  • a nontotient.
  • palindromic in bases 5 (41145) and 14 (2A214).
  • an admirable number.
is prime[11]

535

535 = 5 × 107. It is:

for ; this polynomial plays an essential role in Apéry's proof that is irrational.

535 is used as an abbreviation for May 35, which is used in China instead of June 4 to evade censorship by the Chinese government of references on the Internet to the Tiananmen Square protests of 1989.[41]

536

536 = 23 × 67. It is:

  • the number of ways to arrange the pieces of the ostomachion into a square, not counting rotation or reflection.
  • the number of 1's in all partitions of 23 into odd parts[42]
  • a refactorable number.[10]
  • the lowest happy number beginning with the digit 5.

537

537 = 3 × 179, Mertens function (537) = 0, Blum integer, D-number[26]

538

538 = 2 × 269. It is:

539

539 = 72 × 11

is prime[11]

540s

540

540 = 22 × 33 × 5. It is:

541

541 is:

For the Mertens function,

542

542 = 2 × 271. It is:

543

543 = 3 × 181; palindromic in bases 11 (45411) and 12 (39312), D-number.[26]

is prime[11]

544

544 = 25 × 17. Take a grid of 2 times 5 points. There are 14 points on the perimeter. Join every pair of the perimeter points by a line segment. The lines do not extend outside the grid. 544 is the number of regions formed by these lines. OEIS: A331452

544 is also the number of pieces that could be seen in a 5×5×5×5 Rubik's Tesseract. As a standard 5×5×5 has 98 visible pieces (53 − 33), a 5×5×5×5 has 544 visible pieces (54 − 34).

545

545 = 5 × 109. It is:

546

546 = 2 × 3 × 7 × 13. It is:

  • the sum of eight consecutive primes (53 + 59 + 61 + 67 + 71 + 73 + 79 + 83).
  • palindromic in bases 4 (202024), 9 (6669), and 16 (22216).
  • a repdigit in bases 9 and 16.
  • 546! − 1 is prime.

547

547 is:

548

548 = 22 × 137. It is:

Also, every positive integer is the sum of at most 548 ninth powers;

549

549 = 32 × 61, it is:

  • a repdigit in bases 13 (33313) and 60 (9960).
  • φ(549) = φ(σ(549)).[55]

550s

550

550 = 2 × 52 × 11. It is:

551

551 = 19 × 29. It is:

  • It is the number of mathematical trees on 12 unlabeled nodes.[58]
  • the sum of three consecutive primes (179 + 181 + 191).
  • palindromic in base 22 (13122).
  • the SMTP status code meaning user is not local

552

552 = 23 × 3 × 23. It is:

  • the sum of six consecutive primes (79 + 83 + 89 + 97 + 101 + 103).
  • the sum of ten consecutive primes (37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73).
  • a pronic number.[14]
  • an untouchable number.[24]
  • palindromic in base 19 (1A119).
  • a Harshad number.
  • the model number of U-552.
  • the SMTP status code meaning requested action aborted because the mailbox is full.

553

553 = 7 × 79. It is:

  • the sum of nine consecutive primes (43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79).
  • central polygonal number.[15]
  • the model number of U-553.
  • the SMTP status code meaning requested action aborted because of faulty mailbox name.

554

554 = 2 × 277. It is:

  • a nontotient.
  • a 2-Knödel number
  • the SMTP status code meaning transaction failed.

Mertens function(554) = 6, a record high that stands until 586.

555

555 = 3 × 5 × 37 is:

  • a sphenic number.
  • palindromic in bases 9 (6769), 10 (55510), and 12 (3A312).
  • a repdigit in bases 10 and 36.
  • a Harshad number.
  • φ(555) = φ(σ(555)).[55]

556

556 = 22 × 139. It is:

  • the sum of four consecutive primes (131 + 137 + 139 + 149).
  • an untouchable number, because it is never the sum of the proper divisors of any integer.[24]
  • a happy number.
  • the model number of U-556; 5.56×45mm NATO cartridge.

557

557 is:

  • a prime number.
  • a Chen prime.
  • an Eisenstein prime with no imaginary part.
  • the number of parallelogram polyominoes with 9 cells.[59]

558

558 = 2 × 32 × 31. It is:

  • a nontotient.
  • a repdigit in bases 30 (II30) and 61 (9961).
  • a Harshad number.
  • The sum of the largest prime factors of the first 558 is itself divisible by 558 (the previous such number is 62, the next is 993).
  • in the title of the Star Trek: Deep Space Nine episode "The Siege of AR-558"

559

559 = 13 × 43. It is:

  • the sum of five consecutive primes (103 + 107 + 109 + 113 + 127).
  • the sum of seven consecutive primes (67 + 71 + 73 + 79 + 83 + 89 + 97).
  • a nonagonal number.[60]
  • a centered cube number.[61]
  • palindromic in base 18 (1D118).
  • the model number of U-559.

560s

560

560 = 24 × 5 × 7. It is:

  • a tetrahedral number.[62]
  • a refactorable number.
  • palindromic in bases 3 (2022023) and 6 (23326).
  • the number of diagonals in a 35-gon[36]

561

561 = 3 × 11 × 17. It is:

562

562 = 2 × 281. It is:

  • a Smith number.[25]
  • an untouchable number.[24]
  • the sum of twelve consecutive primes (23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71).
  • palindromic in bases 4 (203024), 13 (34313), 14 (2C214), 16 (23216), and 17 (1G117).
  • a lazy caterer number (sequence A000124 in the OEIS).
  • the number of Native American (including Alaskan) Nations, or "Tribes," recognized by the USA government.

56264 + 1 is prime

563

563 is:

564

564 = 22 × 3 × 47. It is:

  • the sum of a twin prime (281 + 283).
  • a refactorable number.
  • palindromic in bases 5 (42245) and 9 (6869).
  • number of primes <= 212.[69]

565

565 = 5 × 113. It is:

  • the sum of three consecutive primes (181 + 191 + 193).
  • a member of the Mian–Chowla sequence.[70]
  • a happy number.
  • palindromic in bases 10 (56510) and 11 (47411).

566

566 = 2 × 283. It is:

567

567 = 34 × 7. It is:

  • palindromic in base 12 (3B312).
is prime[11]

568

568 = 23 × 71. It is:

  • the sum of the first nineteen primes (a term of the sequence OEIS: A007504).
  • a refactorable number.
  • palindromic in bases 7 (14417) and 21 (16121).
  • the smallest number whose seventh power is the sum of 7 seventh powers.
  • the room number booked by Benjamin Braddock in the 1967 film The Graduate.
  • the number of millilitres in an imperial pint.
  • the name of the Student Union bar at Imperial College London

569

569 is:

  • a prime number.
  • a Chen prime.
  • an Eisenstein prime with no imaginary part.
  • a strictly non-palindromic number.[67]

570s

570

570 = 2 × 3 × 5 × 19. It is:

  • a triangular matchstick number[71]
  • a balanced number[72]

571

571 is:

  • a prime number.
  • a Chen prime.
  • a centered triangular number.[22]
  • the model number of U-571 which appeared in the 2000 movie U-571

572

572 = 22 × 11 × 13. It is:

573

573 = 3 × 191. It is:

574

574 = 2 × 7 × 41. It is:

  • a sphenic number.
  • a nontotient.
  • palindromic in base 9 (7079).
  • number of partitions of 27 that do not contain 1 as a part.[73]
  • number of amino acid residues in a hemoglobin molecule.

575

575 = 52 × 23. It is:

And the sum of the squares of the first 575 primes is divisible by 575.[75]

576

576 = 26 × 32 = 242. It is:

  • the sum of four consecutive primes (137 + 139 + 149 + 151).
  • a highly totient number.[76]
  • a Smith number.[25]
  • an untouchable number.[24]
  • palindromic in bases 11 (48411), 14 (2D214), and 23 (12123).
  • a Harshad number.
  • four-dozen sets of a dozen, which makes it 4 gross.
  • a cake number.
  • the number of parts in all compositions of 8.[77]

577

577 is:

578

578 = 2 × 172. It is:

  • a nontotient.
  • palindromic in base 16 (24216).
  • area of a square with diagonal 34[79]

579

579 = 3 × 193; it is a ménage number,[80] and a semiprime.

580s

580

580 = 22 × 5 × 29. It is:

  • the sum of six consecutive primes (83 + 89 + 97 + 101 + 103 + 107).
  • palindromic in bases 12 (40412) and 17 (20217).

581

581 = 7 × 83. It is:

  • the sum of three consecutive primes (191 + 193 + 197).
  • a Blum integer

582

582 = 2 × 3 × 97. It is:

  • a sphenic number.
  • the sum of eight consecutive primes (59 + 61 + 67 + 71 + 73 + 79 + 83 + 89).
  • a nontotient.
  • a vertically symmetric number (sequence A053701 in the OEIS).
  • an admirable number.

583

583 = 11 × 53. It is:

  • palindromic in base 9 (7179).
  • number of compositions of 11 whose run-lengths are either weakly increasing or weakly decreasing[81]

584

584 = 23 × 73. It is:

  • an untouchable number.[24]
  • the sum of totient function for first 43 integers.
  • a refactorable number.

585

585 = 32 × 5 × 13. It is:

  • palindromic in bases 2 (10010010012), 8 (11118), and 10 (58510).
  • a repdigit in bases 8, 38, 44, and 64.
  • the sum of powers of 8 from 0 to 3.

When counting in binary with fingers, expressing 585 as 1001001001, results in the isolation of the index and little fingers of each hand, "throwing up the horns".

586

586 = 2 × 293.

587

587 is:

  • a prime number.
  • safe prime.[3]
  • a Chen prime.
  • an Eisenstein prime with no imaginary part.
  • the sum of five consecutive primes (107 + 109 + 113 + 127 + 131).
  • palindromic in bases 11 (49411) and 15 (29215).
  • the outgoing port for email message submission.
  • a prime index prime.

588

588 = 22 × 3 × 72. It is:

  • a Smith number.[25]
  • palindromic in base 13 (36313).
  • a Harshad number.

589

589 = 19 × 31. It is:

590s

590

590 = 2 × 5 × 59. It is:

591

591 = 3 × 197, D-number[26]

592

592 = 24 × 37. It is:

  • palindromic in bases 9 (7279) and 12 (41412).
  • a Harshad number.

59264 + 1 is prime

593

593 is:

  • a prime number.
  • a Sophie Germain prime.
  • the sum of seven consecutive primes (71 + 73 + 79 + 83 + 89 + 97 + 101).
  • the sum of nine consecutive primes (47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 83).
  • an Eisenstein prime with no imaginary part.
  • a balanced prime.[66]
  • a Leyland prime.
  • a member of the Mian–Chowla sequence.[70]
  • strictly non-palindromic prime.[67]

594

594 = 2 × 33 × 11. It is:

  • the sum of ten consecutive primes (41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79).
  • a nontotient.
  • palindromic in bases 5 (43345) and 16 (25216).
  • a Harshad number.
  • the number of diagonals in a 36-gon.[36]
  • a balanced number.[72]

595

595 = 5 × 7 × 17. It is:

596

596 = 22 × 149. It is:

  • the sum of four consecutive primes (139 + 149 + 151 + 157).
  • a nontotient.
  • a lazy caterer number (sequence A000124 in the OEIS).

597

597 = 3 × 199. It is:

598

598 = 2 × 13 × 23 = 51 + 92 + 83. It is:

599

599 is:

  • a prime number.
  • a Chen prime.
  • an Eisenstein prime with no imaginary part.
  • a prime index prime.

4599 - 3599 is prime.


References

  1. Sloane, N. J. A. (ed.). "Sequence A000219 (Number of planar partitions (or plane partitions) of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. Evans, I.H., Brewer's Dictionary of Phrase and Fable, 14th ed., Cassell, 1990, ISBN 0-304-34004-9
  3. that is, a term of the sequence OEIS: A034961
  4. that is, the first term of the sequence OEIS: A133525
  5. since 503+2 is a product of two primes, 5 and 101
  6. since it is a prime which is congruent to 2 modulo 3.
  7. Wohlfahrt, K. (1985). "Macbeath's curve and the modular group". Glasgow Math. J. 27: 239–247. doi:10.1017/S0017089500006212. MR 0819842.
  8. Sloane, N. J. A. (ed.). "Sequence A000070". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-31.
  9. Sloane, N. J. A. (ed.). "Sequence A000096". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-31.
  10. Larmer, Brook (October 26, 2011). "Where an Internet Joke Is Not Just a Joke". New York Times. Retrieved November 1, 2011.
  11. Snorri Sturluson (1880). "Prose Edda". p. 107.
  12. Snorri Sturluson (1880). "Prose Edda". p. 82.
  13. "Sloane's A000055: Number of trees with n unlabeled nodes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Archived from the original on 2010-11-29. Retrieved 2021-12-19.
  14. Higgins, Peter (2008). Number Story: From Counting to Cryptography. New York: Copernicus. p. 14. ISBN 978-1-84800-000-1.
  15. Sloane, N. J. A. (ed.). "Sequence A007053". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.
  16. Sloane, N. J. A. (ed.). "Sequence A045943". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.

Share this article:

This article uses material from the Wikipedia article 541_(number), and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.