Adam_Matzger

Adam J. Matzger

Adam J. Matzger, a researcher in polymers and crystals, is the Charles G. Overberger Collegiate Professor of Chemistry at the University of Michigan.

Quick Facts Born, Nationality ...

Biography

Matzger is a native of Piedmont, California but moved to Ohio to complete his undergraduate career at Oberlin College, where he graduated with a Bachelor of Arts in Chemistry in 1992. From there he moved back to California for his graduate work at the University of California at Berkeley where he studied under Professor Peter C. Vollhardt. In 1997 he earned his Ph. D. degree with a thesis titled "Synthetic, Theoretical, and Structural Studies on Dehydrobenzoannulenes and Phenylenes."

He then was a Postdoctoral Researcher at California Institute of Technology (co-mentored by Robert H. Grubbs and Nathan S. Lewis) until 2000 when he was appointed Assistant Professor of Chemistry and of Macromolecular Science and Engineering at the University of Michigan. In 2006 he became an Associate Professor and finally a full Professor in 2009; in 2013 he was appointed as the Charles G. Overberger Collegiate Professor of Chemistry. His group researches a range of topics in organic materials, specifically porous materials, polymorphism and metal organic frameworks (MOFs). He is also leading a Multi-University Research Initiative (MURI), funded by the US Army, for improving material properties through cocrystallization.

Scientific career

While traditionally polymorphs are discovered or selectively made through manipulation of growth conditions, such as temperature or solvent, Matzger's group has instead found the ability to control polymorphs by employing different polymers to induce heteronucleation. He first showed this ability with the control over the monoclinic and orthorhombic forms of acetaminophen, a widely used pharmaceutical.[1] This is the only polymorph discovery technique invented in the last 100 years to substantially increase the range of polymorphs accessible;[citation needed]

Matzger has pioneered the use of cocrystallization for development of energetic materials. His group has made numerous cocrystals with increased power and decreased sensitivity. Among these are a 2:1 cocrystal of CL-20:HMX and a 1:1 CL20:TNT(2,4,6-trinitro-toluene).[2][3] CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaiso-wurtzitane) is a powerful explosive that is too sensitive to be viable in military use and HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane) is a standard military explosive. Previous to his work, only aromatic energetic materials were able to form cocrystals because of their ability to pi-stack. Cocrystals that his group have formed are realized through CH hydrogen bonding with the oxygen atoms from the nitro groups, thus opening cocrystallization to the more powerful non-aromatic energetics.

His group uses scanning tunneling microscopy to investigate the spontaneous self-assembly of physisorbed monolayers at atmospheric conditions, two-dimensional crystallization. From this they have created a two-dimensional structural database (2DSD) which has helped unify the view of interfacial self-assembly making it possible to draw comparisons to bulk crystals.[4] This allows the investigation of the differences that arise due to the presence of an interface or reduced dimensionality.

His lab synthesized metal-organic frameworks (MOFs) with high surface areas. Through a collaboration with Michael O'Keeffe and Omar M. Yaghi, they developed MOF-177, or Zn4O(1,3,5-benzenetribenzonate)2, which has a very large surface area, 4,500 m2g−1 and extra large pores which allow the binding of large guest molecules, such as polycyclic organic molecules, the combination of which was not possible in a single material prior to this.[5] Developments from this have included the introduction of coordination copolymerization for producing high surface area materials from simple feedstocks.[6]

Awards and honors


References

  1. Lang, M.; Grzesiak, A. L.; Matzger, A. J., "The Use of Polymer Heteronuclei for Crystalline Polymorph Selection" J. Am. Chem. Soc. 2002, 124, 14834-14835. (Featured in Science News)
  2. Bolton, O.; Matzger, A. J., "Improved Stability and Smart-Material Functionality Realized in an Energetic Cocrystal" Angew. Chemie Int. Ed. Engl., 2011, 50, 8960-8963. Highlighted in RSC Chemistry World (Sep 6, 2011) and ScienceNews.org (Oct 22, 2011).
  3. Bolton, O.; Simke, L. R.; Pagoria, P. F.; Matzger, A. J., "High Power Explosive with Good Sensitivity: A 2:1 Cocrystal of CL-20: HMX" Cryst. Growth Des. 2012, 12, 4311. Highlighted in Chemical and Engineering News (Sep 10, 2012), the Economist (Sep 15, 2012), and Popular Mechanics (Sep 14, 2012).
  4. Plass, K. E.; Grzesiak, A. L.; Matzger, A. J., "Molecular Packing and Symmetry of Two-Dimensional Crystals" Acc. Chem. Res. 2007, 40, 287-293.
  5. Chae, H. K.; Siberio-Perez, D. Y.; Kim, J.; Go, Y. B.; Eddaoudi, M.; Matzger, A. J.; O'Keeffe, M.; Yaghi, O. M., "A Route to High Surface Area, Porosity and Inclusion of Large Molecules in Crystals" Nature, 2004, 427, 523-527. (Highlighted in "This Week" in Nature. Featured in Chemical and Engineering News, New York Times, Materials TOday, Science Now, New Scientist Magazine and BBC radio)
  6. Koh, K.; Wong-Foy, A. G.; Matzger, A. J., "Coordination Copolymerization Mediated by Zn4O(CO2R)6 Metal Clusters: a Balancing Act between Statistics and Geometry" J. Am. Chem. Soc., 2012, 132, 15005-15010.
  7. "Adam Matzger". Arnold and Mabel Beckman Foundation. Retrieved 1 August 2018.

Share this article:

This article uses material from the Wikipedia article Adam_Matzger, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.