Alexiewicz_norm

Alexiewicz norm

In mathematics specifically, in integration theory the Alexiewicz norm is an integral norm associated to the Henstock–Kurzweil integral. The Alexiewicz norm turns the space of HenstockKurzweil integrable functions into a topological vector space that is barrelled but not complete. The Alexiewicz norm is named after the Polish mathematician Andrzej Alexiewicz, who introduced it in 1948.

Definition

Let HK(R) denote the space of all functions f: R  R that have finite HenstockKurzweil integral. Define the Alexiewicz semi-norm of f  HK(R) by

This defines a semi-norm on HK(R); if functions that are equal Lebesgue-almost everywhere are identified, then this procedure defines a bona fide norm on the quotient of HK(R) by the equivalence relation of equality almost everywhere. (Note that the only constant function f: R  R that is integrable is the one with constant value zero.)

Properties

  • The Alexiewicz norm endows HK(R) with a topology that is barrelled but incomplete.
  • The Alexiewicz norm as defined above is equivalent to the norm defined by
Therefore, if f  A(R), then f is a tempered distribution and there exists a continuous function F in the above collection such that
for every compactly supported C test function φ: R  R. In this case, it holds that
  • The translation operator is continuous with respect to the Alexiewicz norm. That is, if for f  HK(R) and x  R the translation Txf of f by x is defined by
then

References

  • Alexiewicz, Andrzej (1948). "Linear functionals on Denjoy-integrable functions". Colloquium Math. 1 (4): 289–293. doi:10.4064/cm-1-4-289-293. MR 0030120.
  • Talvila, Erik (2006). "Continuity in the Alexiewicz norm". Math. Bohem. 131 (2): 189–196. doi:10.21136/MB.2006.134092. ISSN 0862-7959. MR 2242844. S2CID 56031790.

Share this article:

This article uses material from the Wikipedia article Alexiewicz_norm, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.