Axiom of choice

In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that a Cartesian product of a collection of non-empty sets is non-empty. Informally put, the axiom of choice says that given any collection of bins, each containing at least one object, it is possible to construct a set by arbitrarily choosing one object from each bin, even if the collection is infinite. Formally, it states that for every indexed family of nonempty sets, there exists an indexed set such that for every . The axiom of choice was formulated in 1904 by Ernst Zermelo in order to formalize his proof of the well-ordering theorem.[1]

Illustration of the axiom of choice, with each Si represented as a jar and with their elements represented as marbles. Each xi is represented as a marble on the right. Colors are used to highlighting the association of marbles after the application of the choice axiom.
(Si) is an infinite indexed family of sets indexed over the real numbers R; that is, there is a set Si for each real number i, with a small sample shown above. Each set contains at least one, and possibly infinitely many, elements. The axiom of choice allows us to arbitrarily select a single element from each set, forming a corresponding family of elements (xi) also indexed over the real numbers, with xi drawn from Si. In general, the collections may be indexed over any set I, (called index set which elements are used as indices for elements in a set) not just R.

In many cases, a set arising from choosing elements arbitrarily can be made without invoking the axiom of choice; this is in particular the case if the number of sets from which to choose the elements is finite, or if a canonical rule on how to choose the elements is available – some distinguishing property that happens to hold for exactly one element in each set. An illustrative example is sets picked from the natural numbers. From such sets, one may always select the smallest number, e.g. given the sets {{4, 5, 6}, {10, 12}, {1, 400, 617, 8000}} the set containing each smallest element is {4, 10, 1}. In this case, "select the smallest number" is a choice function. Even if infinitely many sets were collected from the natural numbers, it will always be possible to choose the smallest element from each set to produce a set. That is, the choice function provides the set of chosen elements. However, no definite choice function is known for the collection of all non-empty subsets of the real numbers (if there are non-constructible reals). In that case, the axiom of choice must be invoked.

Bertrand Russell coined an analogy: for any (even infinite) collection of pairs of shoes, one can pick out the left shoe from each pair to obtain an appropriate collection (i.e. set) of shoes; this makes it possible to define a choice function directly. For an infinite collection of pairs of socks (assumed to have no distinguishing features), there is no obvious way to make a function that forms a set out of selecting one sock from each pair, without invoking the axiom of choice.[2]

Although originally controversial, the axiom of choice is now used without reservation by most mathematicians,[3] and it is included in the standard form of axiomatic set theory, Zermelo–Fraenkel set theory with the axiom of choice (ZFC). One motivation for this use is that a number of generally accepted mathematical results, such as Tychonoff's theorem, require the axiom of choice for their proofs. Contemporary set theorists also study axioms that are not compatible with the axiom of choice, such as the axiom of determinacy. The axiom of choice is avoided in some varieties of constructive mathematics, although there are varieties of constructive mathematics in which the axiom of choice is embraced.


Share this article:

This article uses material from the Wikipedia article Axiom of choice, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.