Bartonellaceae

<i>Bartonella</i>

Bartonella

Genus of bacteria


Bartonella is a genus of Gram-negative bacteria. It is the only genus in the family Bartonellaceae.[2][3] Facultative intracellular parasites, Bartonella species can infect healthy people, but are considered especially important as opportunistic pathogens.[4] Bartonella species are transmitted by vectors such as fleas, sand flies, and mosquitoes. At least eight Bartonella species or subspecies are known to infect humans.[5]

Quick Facts Bartonella, Scientific classification ...

Bartonella henselae is the organism responsible for cat scratch disease.

History

Bartonella species have been infecting humans for thousands of years, as demonstrated by Bartonella quintana DNA in a 4000-year-old tooth.[6] The genus is named for Alberto Leonardo Barton Thompson (1871–October 26, 1950), a Peruvian scientist.[7]

Infection cycle

The currently accepted model explaining the infection cycle holds that the transmitting vectors are blood-sucking arthropods and the reservoir hosts are mammals. Immediately after infection, the bacteria colonize a primary niche, the endothelial cells. Every five days, some of the Bartonella bacteria in the endothelial cells are released into the blood stream, where they infect erythrocytes. The bacteria then invade a phagosomal membrane inside the erythrocytes, where they multiply until they reach a critical population density. At this point, they simply wait until they are taken up with the erythrocytes by a blood-sucking arthropod.[citation needed]

Though some studies have found "no definitive evidence of transmission by a tick to a vertebrate host,"[8][9] Bartonella species are well-known to be transmissible to both animals and humans through various other vectors, such as fleas, lice, and sand flies.[10][11] Bartonella bacteria are associated with cat-scratch disease, but a study in 2010 concluded, "Clinicians should be aware that ... a history of an animal scratch or bite is not necessary for disease transmission."[12] All current Bartonella species identified in canines are human pathogens.[13]

Pathophysiology

Bartonella infections are remarkable in the wide range of symptoms they can produce. The course of the diseases (acute or chronic) and the underlying pathologies are highly variable.[14]

More information Species, Human reservoir or incidental host? ...

Treatment

Treatment is dependent on which species or strain of Bartonella is found in a given patient. While Bartonella species are susceptible to a number of standard antibiotics in vitromacrolides and tetracycline, for example—the efficacy of antibiotic treatment in immunocompetent individuals is uncertain.[14] Immunocompromised patients should be treated with antibiotics because they are particularly susceptible to systemic disease and bacteremia. Drugs of particular effectiveness include trimethoprim-sulfamethoxazole, gentamicin, ciprofloxacin, and rifampin; B. henselae is generally resistant to penicillin, amoxicillin, and nafcillin.[14]

Epidemiology

Homeless intravenous drug users are at high risk for Bartonella infections, particularly B. elizabethae. B. elizabethae seropositivity rates in this population range from 12.5% in Los Angeles,[19] to 33% in Baltimore, Maryland,[20] 46% in New York City,[21] and 39% in Sweden.[22]

Phylogeny

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN).[1] The phylogeny is based on whole-genome analysis.[23]


References

  1. "List of Prokaryotic Names with Standing in Nomenclature". Retrieved 28 March 2015.
  2. Peters D, R. Wigand (1955). "Bartonellaceae". Bacteriol. Rev. 19 (3): 150–159. doi:10.1128/MMBR.19.3.150-159.1955. PMC 180822. PMID 13260099.
  3. Walker DH (1996). "Rickettsiae". In Baron S, et al. (eds.). Rickettsiae. In: Barron's Medical Microbiology (4th ed.). Univ of Texas Medical Branch. ISBN 978-0-9631172-1-2.
  4. Chomel BB, Boulouis HJ (2005). "Zoonoses dues aux bactéries du genre Bartonella: nouveaux réservoirs? nouveaux vecteurs?" [Zoonotic diseases caused by bacteria of the genus Bartonella: new reservoirs? new vectors?] (PDF). Bull. Acad. Natl. Med. (in French). 189 (3): 465–77, discussion 477–80. PMID 16149211.
  5. Drancourt M, Tran-Hung L, Courtin J, Lumley H, Raoult D (2005). "Bartonella quintana in a 4000-year-old human tooth". J. Infect. Dis. 191 (4): 607–11. doi:10.1086/427041. PMID 15655785.
  6. "etymologia: Bartonella henselae". Emerging Infectious Diseases. 14 (6): 980. June 2008. doi:10.3201/eid1406.080980. ISSN 1080-6040. PMC 2600307.
  7. Angelakis E, Billeter SA, Breitschwerdt EB, Chomel BB, Raoult D (March 2010). "Potential for tick-borne bartonellosis". Emerg Infect Dis. 16 (3): 385–91. doi:10.3201/eid1603.091685. PMC 3322042. PMID 20202411.
  8. Telford SR III, Wormser GP (March 2010). "Bartonella spp. transmission by ticks not established". Emerg Infect Dis. 16 (3): 379–84. doi:10.3201/eid1603.090443. PMC 3322007. PMID 20202410.
  9. Billeter SA, Levy MG, Chomel BB, Breitschwerdt EB (Mar 2008). "Vector transmission of Bartonella species with emphasis on the potential for tick transmission". Med Vet Entomol. 22 (1): 1–15. doi:10.1111/j.1365-2915.2008.00713.x. PMID 18380649.
  10. Vilcins I, Kosoy M, Old JM, Deane EM (2009). Bartonella-like DNA detected in Ixodes ticks (Acari: Ixodida) infesting koalas (Phascolarctos cinereus) in Victoria, Australia. Vector-Borne & Zoonotic Diseases. 9(5), 499-503. DOI: 10.1089/vbz.2008.0132
  11. Mosbacher M, Elliott SP, Shehab Z, Pinnas JL, Klotz JH, Klotz SA (Sep–Oct 2010). "Cat scratch disease and arthropod vectors: more to it than a scratch?". J Am Board Fam Med. 23 (5): 685–6. doi:10.3122/jabfm.2010.05.100025. PMID 20823366.
  12. Chomel BB, Boulouis HJ, Maruyama S, Breitschwerdt EB (Mar 2006). "Bartonella spp. in pets and effect on human health". Emerg Infect Dis. 12 (3): 389–94. doi:10.3201/eid1203.050931. PMC 3291446. PMID 16704774.
  13. Rolain JM, Brouqui P, Koehler JE, Maguina C, Dolan MJ, Raoult D (2004). "Recommendations for treatment of human infections caused by Bartonella species". Antimicrob. Agents Chemother. 48 (6): 1921–33. doi:10.1128/AAC.48.6.1921-1933.2004. PMC 415619. PMID 15155180.
  14. Jacomo V, Kelly PJ, Raoult D (2002). "Natural history of Bartonella infections (an exception to Koch's postulate)". Clin. Diagn. Lab. Immunol. 9 (1): 8–18. doi:10.1128/CDLI.9.1.8-18.2002. PMC 119901. PMID 11777823. Archived from the original on 2005-05-26.
  15. Maco V, Maguiña C, Tirado A, Maco V, Vidal JE (2004). "Carrion's disease (Bartonellosis bacilliformis) confirmed by histopathology in the High Forest of Peru". Rev. Inst. Med. Trop. Sao Paulo. 46 (3): 171–4. doi:10.1590/S0036-46652004000300010. PMID 15286824.
  16. Comer JA, Flynn C, Regnery RL, Vlahov D, Childs JE (1996). "Antibodies to Bartonella species in inner-city intravenous drug users in Baltimore, Md". Arch. Intern. Med. 156 (21): 2491–5. doi:10.1001/archinte.156.21.2491. PMID 8944742.
  17. Comer JA, Diaz T, Vlahov D, Monterroso E, Childs JE (2001). "Evidence of rodent-associated Bartonella and Rickettsia infections among intravenous drug users from Central and East Harlem, New York City". Am. J. Trop. Med. Hyg. 65 (6): 855–60. doi:10.4269/ajtmh.2001.65.855. PMID 11791987. S2CID 22138835.
  18. McGill S, Hjelm E, Rajs J, Lindquist O, Friman G (2003). "Bartonella spp. antibodies in forensic samples from Swedish heroin addicts". Ann. N. Y. Acad. Sci. 990 (1): 409–13. Bibcode:2003NYASA.990..409M. doi:10.1111/j.1749-6632.2003.tb07402.x. PMID 12860665. S2CID 22712706.
  19. Hördt A, García López M, Meier-Kolthoff JP, Schleuning M, Weinhold LM, Tindall BJ, Gronow A, Kyrpides NC, Woyke T, Göker M (2020). "Analysis of 1,000+ Type-Strain Genomes Substantially Improves Taxonomic Classification of Alphaproteobacteria". Front. Microbiol. 11: 468. doi:10.3389/fmicb.2020.00468. PMC 7179689. PMID 32373076.

Share this article:

This article uses material from the Wikipedia article Bartonellaceae, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.