CACNA1H

Calcium channel, voltage-dependent, T type, alpha 1H subunit

Calcium channel, voltage-dependent, T type, alpha 1H subunit

Protein-coding gene in the species Homo sapiens


Calcium channel, voltage-dependent, T type, alpha 1H subunit, also known as CACNA1H, is a protein which in humans is encoded by the CACNA1H gene.[5][6][7]

Quick Facts CACNA1H, Identifiers ...

Function

This gene encodes Cav3.2, a T-type member of the α1 subunit family, a protein in the voltage-dependent calcium channel complex. Calcium channels mediate the influx of calcium ions into the cell upon membrane polarization and consist of a complex of α1, α2δ, β, and γ subunits in a 1:1:1:1 ratio. The α1 subunit has 24 transmembrane segments and forms the pore through which ions pass into the cell. There are multiple isoforms of each of the proteins in the complex, either encoded by different genes or the result of alternative splicing of transcripts. Alternate transcriptional splice variants, encoding different isoforms, have been characterized for the gene described here.[5]

Clinical significance

Studies suggest certain mutations in this gene lead to childhood absence epilepsy (CAE).[8] Variants of Cav3.2 with increased channel activity contribute to susceptibility to idiopathic generalized epilepsy (IGE), but are not sufficient to induce epilepsy on their own.[9] The SFARIgene database lists CACNA1H with an autism score of 2.1, indicating a candidate causal relationship with autism.

See also


References

  1. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  2. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. Cribbs LL, Lee JH, Yang J, Satin J, Zhang Y, Daud A, Barclay J, Williamson MP, Fox M, Rees M, Perez-Reyes E (July 1998). "Cloning and characterization of alpha1H from human heart, a member of the T-type Ca2+ channel gene family". Circ. Res. 83 (1): 103–9. doi:10.1161/01.res.83.1.103. PMID 9670923.
  4. Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (December 2005). "International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels". Pharmacol. Rev. 57 (4): 411–25. doi:10.1124/pr.57.4.5. PMID 16382099. S2CID 10386627.
  5. Chen Y, Lu J, Pan H, Zhang Y, Wu H, Xu K, Liu X, Jiang Y, Bao X, Yao Z, Ding K, Lo WH, Qiang B, Chan P, Shen Y, Wu X (August 2003). "Association between genetic variation of CACNA1H and childhood absence epilepsy". Ann. Neurol. 54 (2): 239–43. doi:10.1002/ana.10607. PMID 12891677. S2CID 33233159.
  6. Heron SE, Khosravani H, Varela D, Bladen C, Williams TC, Newman MR, Scheffer IE, Berkovic SF, Mulley JC, Zamponi GW (December 2007). "Extended spectrum of idiopathic generalized epilepsies associated with CACNA1H functional variants". Ann. Neurol. 62 (6): 560–8. doi:10.1002/ana.21169. hdl:1880/106734. PMID 17696120. S2CID 33737531.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.



Share this article:

This article uses material from the Wikipedia article CACNA1H, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.