David Hilbert

David Hilbert (/ˈhɪlbərt/;[4] German: [ˈdaːvɪt ˈhɪlbɐt]; 23 January 1862 – 14 February 1943) was a German mathematician and one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many areas, including invariant theory, the calculus of variations, commutative algebra, algebraic number theory, the foundations of geometry, spectral theory of operators and its application to integral equations, mathematical physics, and the foundations of mathematics (particularly proof theory).

David Hilbert
Hilbert in 1912
Born(1862-01-23)23 January 1862
Died14 February 1943(1943-02-14) (aged 81)
NationalityGerman
EducationUniversity of Königsberg (PhD)
Known forHilbert's basis theorem
Hilbert's axioms
Hilbert's problems
Hilbert's program
Einstein–Hilbert action
Hilbert space
Epsilon calculus
SpouseKäthe Jerosch
ChildrenFranz (b. 1893)
AwardsLobachevsky Prize (1903)
Bolyai Prize (1910)
ForMemRS[1]
Scientific career
FieldsMathematics, Physics and Philosophy
InstitutionsUniversity of Königsberg
Göttingen University
ThesisOn Invariant Properties of Special Binary Forms, Especially of Spherical Functions (1885)
Doctoral advisorFerdinand von Lindemann[2]
Doctoral students
Other notable studentsEdward Kasner
John von Neumann
InfluencesImmanuel Kant[3]

Hilbert adopted and defended Georg Cantor's set theory and transfinite numbers. In 1900, he presented a collection of problems that set the course for much of the mathematical research of the 20th century.[5][6]

Hilbert and his students contributed significantly to establishing rigor and developed important tools used in modern mathematical physics. Hilbert is known as one of the founders of proof theory and mathematical logic.[7]


Share this article:

This article uses material from the Wikipedia article David Hilbert, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.