Dehn-Sommerville_equations

Dehn–Sommerville equations

Dehn–Sommerville equations

Add article description


In mathematics, the Dehn–Sommerville equations are a complete set of linear relations between the numbers of faces of different dimension of a simplicial polytope. For polytopes of dimension 4 and 5, they were found by Max Dehn in 1905. Their general form was established by Duncan Sommerville in 1927. The Dehn–Sommerville equations can be restated as a symmetry condition for the h-vector of the simplicial polytope and this has become the standard formulation in recent combinatorics literature. By duality, analogous equations hold for simple polytopes.

Statement

Let P be a d-dimensional simplicial polytope. For i = 0, 1, ..., d  1, let fi denote the number of i-dimensional faces of P. The sequence

is called the f-vector of the polytope P. Additionally, set

Then for any k = 1, 0, ..., d  2, the following Dehn–Sommerville equation holds:

When k = 1, it expresses the fact that Euler characteristic of a (d  1)-dimensional simplicial sphere is equal to 1 + (1)d  1.

Dehn–Sommerville equations with different k are not independent. There are several ways to choose a maximal independent subset consisting of equations. If d is even then the equations with k = 0, 2, 4, ..., d  2 are independent. Another independent set consists of the equations with k = 1, 1, 3, ..., d  3. If d is odd then the equations with k = 1, 1, 3, ..., d  2 form one independent set and the equations with k = 1, 0, 2, 4, ..., d  3 form another.

Equivalent formulations

Sommerville found a different way to state these equations:

where 0 k 12(d1). This can be further facilitated introducing the notion of h-vector of P. For k = 0, 1, ..., d, let

The sequence

is called the h-vector of P. The f-vector and the h-vector uniquely determine each other through the relation

Then the Dehn–Sommerville equations can be restated simply as

The equations with 0 k 12(d1) are independent, and the others are manifestly equivalent to them.

Richard Stanley gave an interpretation of the components of the h-vector of a simplicial convex polytope P in terms of the projective toric variety X associated with (the dual of) P. Namely, they are the dimensions of the even intersection cohomology groups of X:

(the odd intersection cohomology groups of X are all zero). In this language, the last form of the Dehn–Sommerville equations, the symmetry of the h-vector, is a manifestation of the Poincaré duality in the intersection cohomology of X.

References

  • Branko Grünbaum, Convex Polytopes. Second edition. Graduate Texts in Mathematics, Vol. 221, Springer, 2003 ISBN 0-387-00424-6
  • Richard P. Stanley, Combinatorics and Commutative Algebra. Second edition. Progress in Mathematics, 41. Birkhäuser Boston, Inc., Boston, MA, 1996. ISBN 0-8176-3836-9
  • D. M. Y. Sommerville (1927) The relations connecting the angle sums and volume of a polytope in space of n dimensions. Proceedings of the Royal Society Series A, 115:103–19, weblink from JSTOR.
  • Günter M. Ziegler, Lectures on Polytopes. Springer, 1998. ISBN 0-387-94365-X

Share this article:

This article uses material from the Wikipedia article Dehn-Sommerville_equations, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.