Delannoy_number

Delannoy number

Delannoy number

Number of paths between grid corners, allowing diagonal steps


In mathematics, a Delannoy number describes the number of paths from the southwest corner (0, 0) of a rectangular grid to the northeast corner (m, n), using only single steps north, northeast, or east. The Delannoy numbers are named after French army officer and amateur mathematician Henri Delannoy.[1]

Quick Facts Named after, No. of known terms ...

The Delannoy number also counts the number of global alignments of two sequences of lengths and ,[2] the number of points in an m-dimensional integer lattice or cross polytope which are at most n steps from the origin,[3] and, in cellular automata, the number of cells in an m-dimensional von Neumann neighborhood of radius n[4] while the number of cells on a surface of an m-dimensional von Neumann neighborhood of radius n is given with (sequence A266213 in the OEIS).

Example

The Delannoy number D(3,3) equals 63. The following figure illustrates the 63 Delannoy paths from (0, 0) to (3, 3):

The subset of paths that do not rise above the SW–NE diagonal are counted by a related family of numbers, the Schröder numbers.

Delannoy array

The Delannoy array is an infinite matrix of the Delannoy numbers:[5]

More information mn ...

In this array, the numbers in the first row are all one, the numbers in the second row are the odd numbers, the numbers in the third row are the centered square numbers, and the numbers in the fourth row are the centered octahedral numbers. Alternatively, the same numbers can be arranged in a triangular array resembling Pascal's triangle, also called the tribonacci triangle,[6] in which each number is the sum of the three numbers above it:

            1
          1   1
        1   3   1
      1   5   5   1
    1   7  13   7   1
  1   9  25  25   9   1
1  11  41  63  41  11   1

Central Delannoy numbers

The central Delannoy numbers D(n) = D(n,n) are the numbers for a square n × n grid. The first few central Delannoy numbers (starting with n=0) are:

1, 3, 13, 63, 321, 1683, 8989, 48639, 265729, ... (sequence A001850 in the OEIS).

Computation

Delannoy numbers

For diagonal (i.e. northeast) steps, there must be steps in the direction and steps in the direction in order to reach the point ; as these steps can be performed in any order, the number of such paths is given by the multinomial coefficient . Hence, one gets the closed-form expression

An alternative expression is given by

or by the infinite series

And also

where is given with (sequence A266213 in the OEIS).

The basic recurrence relation for the Delannoy numbers is easily seen to be

This recurrence relation also leads directly to the generating function

Central Delannoy numbers

Substituting in the first closed form expression above, replacing , and a little algebra, gives

while the second expression above yields

The central Delannoy numbers satisfy also a three-term recurrence relationship among themselves,[7]

and have a generating function

The leading asymptotic behavior of the central Delannoy numbers is given by

where and .

See also


References

  1. Banderier, Cyril; Schwer, Sylviane (2005), "Why Delannoy numbers?", Journal of Statistical Planning and Inference, 135 (1): 40–54, arXiv:math/0411128, doi:10.1016/j.jspi.2005.02.004, MR 2202337, S2CID 16226115
  2. Covington, Michael A. (2004), "The number of distinct alignments of two strings", Journal of Quantitative Linguistics, 11 (3): 173–182, doi:10.1080/0929617042000314921, S2CID 40549706
  3. Luther, Sebastian; Mertens, Stephan (2011), "Counting lattice animals in high dimensions", Journal of Statistical Mechanics: Theory and Experiment, 2011 (9): P09026, arXiv:1106.1078, Bibcode:2011JSMTE..09..026L, doi:10.1088/1742-5468/2011/09/P09026, S2CID 119308823
  4. Breukelaar, R.; Bäck, Th. (2005), "Using a Genetic Algorithm to Evolve Behavior in Multi Dimensional Cellular Automata: Emergence of Behavior", Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation (GECCO '05), New York, NY, USA: ACM, pp. 107–114, doi:10.1145/1068009.1068024, ISBN 1-59593-010-8, S2CID 207157009
  5. Sulanke, Robert A. (2003), "Objects counted by the central Delannoy numbers" (PDF), Journal of Integer Sequences, 6 (1): Article 03.1.5, Bibcode:2003JIntS...6...15S, MR 1971435
  6. Peart, Paul; Woan, Wen-Jin (2002). "A bijective proof of the Delannoy recurrence". Congressus Numerantium. 158: 29–33. ISSN 0384-9864. MR 1985142. Zbl 1030.05003.

Share this article:

This article uses material from the Wikipedia article Delannoy_number, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.