# Dimensional analysis

In engineering and science, **dimensional analysis** is the analysis of the relationships between different physical quantities by identifying their base quantities (such as length, mass, time, and electric current) and units of measure (such as miles vs. kilometres, or pounds vs. kilograms) and tracking these dimensions as calculations or comparisons are performed. The term dimensional analysis is also used to refer to conversion of units from one dimensional unit to another, which can be used to evaluate scientific formulas.

* Commensurable* physical quantities are of the same kind and have the same dimension, and can be directly compared to each other, even if they are expressed in differing units of measure, e.g. yards and metres, pounds (mass) and kilograms, seconds and years.

*Incommensurable*physical quantities are of different kinds and have different dimensions, and can not be directly compared to each other, no matter what units they are expressed in, e.g. metres and kilograms, seconds and kilograms, metres and seconds. For example, asking whether a kilogram is larger than an hour is meaningless.

Any physically meaningful equation, or inequality, *must* have the same dimensions on its left and right sides, a property known as *dimensional homogeneity*. Checking for dimensional homogeneity is a common application of dimensional analysis, serving as a plausibility check on derived equations and computations. It also serves as a guide and constraint in deriving equations that may describe a physical system in the absence of a more rigorous derivation.

The concept of **physical dimension**, and of dimensional analysis, was introduced by Joseph Fourier in 1822.[1]