Directional derivative

In mathematics, the directional derivative of a multivariate differentiable (scalar) function along a given vector v at a given point x intuitively represents the instantaneous rate of change of the function, moving through x with a velocity specified by v.

The directional derivative of a scalar function f with respect to a vector v at a point (e.g., position) x may be denoted by any of the following:

.

It therefore generalizes the notion of a partial derivative, in which the rate of change is taken along one of the curvilinear coordinate curves, all other coordinates being constant. The directional derivative is a special case of the Gateaux derivative.


Share this article:

This article uses material from the Wikipedia article Directional derivative, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.