# Dynamical system

In mathematics, a **dynamical system** is a system in which a function describes the time dependence of a point in a geometrical space. Examples include the mathematical models that describe the swinging of a clock pendulum, the flow of water in a pipe, and the number of fish each springtime in a lake.

It has been suggested that Dynamical system (definition) be merged into this article. (Discuss) Proposed since July 2021. |

At any given time, a dynamical system has a state given by a tuple of real numbers (a vector) that can be represented by a point in an appropriate state space (a geometrical manifold). The *evolution rule* of the dynamical system is a function that describes what future states follow from the current state. Often the function is deterministic, that is, for a given time interval only one future state follows from the current state.[1][2] However, some systems are stochastic, in that random events also affect the evolution of the state variables.

In physics, a **dynamical system** is described as a "particle or ensemble of particles whose state varies over time and thus obeys differential equations involving time derivatives".[3] In order to make a prediction about the system's future behavior, an analytical solution of such equations or their integration over time through computer simulation is realized.

The study of dynamical systems is the focus of dynamical systems theory, which has applications to a wide variety of fields such as mathematics, physics,[4][5] biology,[6] chemistry, engineering,[7] economics,[8] history, and medicine. Dynamical systems are a fundamental part of chaos theory, logistic map dynamics, bifurcation theory, the self-assembly and self-organization processes, and the edge of chaos concept.