Earth ellipsoid

An Earth ellipsoid or Earth spheroid is a mathematical figure approximating the Earth's form, used as a reference frame for computations in geodesy, astronomy, and the geosciences. Various different ellipsoids have been used as approximations.

A scale diagram of the oblateness of the 2003 IERS reference ellipsoid. The outer edge of the dark blue line is an ellipse with the same eccentricity as that of Earth, with north at the top. For comparison, the light blue circle within has a diameter equal to the ellipse's minor axis. The red line represents the Karman line 100 km (62 mi) above sea level, while the yellow area denotes the altitude range of the ISS in low Earth orbit.

It is a spheroid (an ellipsoid of revolution) whose minor axis (shorter diameter), which connects the geographical North Pole and South Pole, is approximately aligned with the Earth's axis of rotation. The ellipsoid is defined by the equatorial axis a and the polar axis b; their difference is about 21 km, or 0.335%.

Many methods exist for determination of the axes of an Earth ellipsoid, ranging from meridian arcs up to modern satellite geodesy or the analysis and interconnection of continental geodetic networks. Amongst the different set of data used in national surveys are several of special importance: the Bessel ellipsoid of 1841, the international Hayford ellipsoid of 1924, and (for GPS positioning) the WGS84 ellipsoid.


One should distinguish between two types of ellipsoid: mean and reference.

A data set which describes the global average of the Earth's surface curvature is called the mean Earth Ellipsoid. It refers to a theoretical coherence between the geographic latitude and the meridional curvature of the geoid. The latter is close to the mean sea level, and therefore an ideal Earth ellipsoid has the same volume as the geoid.

While the mean Earth ellipsoid is the ideal basis of global geodesy, for regional networks a so-called reference ellipsoid may be the better choice.[1] When geodetic measurements have to be computed on a mathematical reference surface, this surface should have a similar curvature as the regional geoid - otherwise, reduction of the measurements will get small distortions.

This is the reason for the "long life" of former reference ellipsoids like the Hayford or the Bessel ellipsoid, despite the fact that their main axes deviate by several hundred meters from the modern values. Another reason is a judicial one: the coordinates of millions of boundary stones should remain fixed for a long period. If their reference surface changes, the coordinates themselves also change.

However, for international networks, GPS positioning, or astronautics, these regional reasons are less relevant. As knowledge of the Earth's figure is increasingly accurate, the International Geoscientific Union IUGG usually adapts the axes of the Earth ellipsoid to the best available data.


Arc measurement is the historical method of determining the ellipsoid. Assume the astronomic latitudes of two endpoints, φs (standpoint) and φf (forepoint), are precisely determined by astrogeodesy, observing the zenith distances of sufficient numbers of stars (meridian altitude method). The radius of curvature at the midpoint of the meridian arc can then be calculated from:

R = Δ'/(|φsf|).

where Δ' is the arc length on mean sea level (MSL).

High precision land surveys can be used to determine the distance between two places at nearly the same longitude by measuring a baseline and a triangulation network linking fixed points. The meridian distance Δ from one end point to a fictitious point at the same latitude as the second end point is then calculated by trigonometry. The surface distance Δ is reduced to the corresponding distance at MSL, Δ'.

A second meridian arc will allow the derivation of two parameters required to specify a reference ellipsoid. Longer arcs with intermediate latitude determinations can completely determine the ellipsoid that best fits the surveyed region. In practice, multiple arc measurements are used to determine the ellipsoid parameters by the method of least squares adjustment. The parameters determined are usually the semi-major axis, , and either the semi-minor axis, , or the flattening,  .

Regional-scale systematic effects observed in the radius of curvature measurements reflect the geoid undulation and the deflection of the vertical, as explored in astrogeodetic leveling.

Modern geodesy no longer uses simple meridian arcs or ground triangulation networks, but the methods of satellite geodesy, especially satellite gravimetry.

Historical Earth ellipsoids

The reference ellipsoid models listed below have had utility in geodetic work and many are still in use. The older ellipsoids are named for the individual who derived them and the year of development is given. In 1887 the English surveyor Colonel Alexander Ross Clarke CB FRS RE was awarded the Gold Medal of the Royal Society for his work in determining the figure of the Earth. The international ellipsoid was developed by John Fillmore Hayford in 1910 and adopted by the International Union of Geodesy and Geophysics (IUGG) in 1924, which recommended it for international use.

At the 1967 meeting of the IUGG held in Lucerne, Switzerland, the ellipsoid called GRS-67 (Geodetic Reference System 1967) in the listing was recommended for adoption. The new ellipsoid was not recommended to replace the International Ellipsoid (1924), but was advocated for use where a greater degree of accuracy is required. It became a part of the GRS-67 which was approved and adopted at the 1971 meeting of the IUGG held in Moscow. It is used in Australia for the Australian Geodetic Datum and in the South American Datum 1969.

The GRS-80 (Geodetic Reference System 1980) as approved and adopted by the IUGG at its Canberra, Australia meeting of 1979 is based on the equatorial radius (semi-major axis of Earth ellipsoid) , total mass , dynamic form factor and angular velocity of rotation , making the inverse flattening a derived quantity. The minute difference in seen between GRS-80 and WGS-84 results from an unintentional truncation in the latter's defining constants: while the WGS-84 was designed to adhere closely to the GRS-80, incidentally the WGS-84 derived flattening turned out to be slightly different than the GRS-80 flattening because the normalized second degree zonal harmonic gravitational coefficient, that was derived from the GRS-80 value for , was truncated to eight significant digits in the normalization process.[2]

An ellipsoidal model describes only the ellipsoid's geometry and a normal gravity field formula to go with it. Commonly an ellipsoidal model is part of a more encompassing geodetic datum. For example, the older ED-50 (European Datum 1950) is based on the Hayford or International Ellipsoid. WGS-84 is peculiar in that the same name is used for both the complete geodetic reference system and its component ellipsoidal model. Nevertheless, the two concepts—ellipsoidal model and geodetic reference system—remain distinct.

Note that the same ellipsoid may be known by different names. It is best to mention the defining constants for unambiguous identification.

Reference ellipsoid nameEquatorial radius (m)Polar radius (m)Inverse flatteningWhere used
Maupertuis (1738)6,397,3006,363,806.283191France
Plessis (1817)6,376,523.06,355,862.9333308.64France
Everest (1830)6,377,299.3656,356,098.359300.80172554India
Everest 1830 Modified (1967)6,377,304.0636,356,103.0390300.8017West Malaysia & Singapore
Everest 1830 (1967 Definition)6,377,298.5566,356,097.550300.8017Brunei & East Malaysia
Airy (1830)6,377,563.3966,356,256.909299.3249646Britain
Bessel (1841)6,377,397.1556,356,078.963299.1528128Europe, Japan
Clarke (1866)6,378,206.46,356,583.8294.9786982North America
Clarke (1878)6,378,1906,356,456293.4659980North America
Clarke (1880)6,378,249.1456,356,514.870293.465France, Africa
Helmert (1906)6,378,2006,356,818.17298.3Egypt
Hayford (1910)6,378,3886,356,911.946297USA
International (1924)6,378,3886,356,911.946297Europe
Krassovsky (1940)6,378,2456,356,863.019298.3USSR, Russia, Romania
WGS66 (1966)6,378,1456,356,759.769298.25USA/DoD
Australian National (1966)6,378,1606,356,774.719298.25Australia
New International (1967)6,378,157.56,356,772.2298.24961539
GRS-67 (1967)6,378,1606,356,774.516298.247167427
South American (1969)6,378,1606,356,774.719298.25South America
WGS-72 (1972)6,378,1356,356,750.52298.26USA/DoD
GRS-80 (1979)6,378,1376,356,752.3141298.257222101Global ITRS[3]
WGS-84 (1984)6,378,1376,356,752.3142298.257223563Global GPS
IERS (1989)6,378,1366,356,751.302298.257
IERS (2003)[4]6,378,136.66,356,751.9298.25642[3]

See also


  1. Alexander, J. C. (1985). "The Numerics of Computing Geodetic Ellipsoids". SIAM Review. 27 (2): 241–247. Bibcode:1985SIAMR..27..241A. doi:10.1137/1027056.
  2. NIMA Technical Report TR8350.2, "Department of Defense World Geodetic System 1984, Its Definition and Relationships With Local Geodetic Systems", Third Edition, 4 July 1997
  3. Note that the current best estimates, given by the IERS Conventions, "should not be mistaken for conventional values, such as those of the Geodetic Reference System GRS80 ... which are, for example, used to express geographic coordinates" (chap. 1); note further that "ITRF solutions are specified by Cartesian equatorial coordinates X, Y and Z. If needed, they can be transformed to geographical coordinates (λ, φ, h) referred to an ellipsoid. In this case the GRS80 ellipsoid is recommended." (chap. 4).
  4. IERS Conventions (2003) (Chp. 1, page 12)