Electric field

An electric field (sometimes E-field[1]) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them.[2] It also refers to the physical field for a system of charged particles.[3] Electric fields originate from electric charges and time-varying electric currents. Electric fields and magnetic fields are both manifestations of the electromagnetic field, one of the four fundamental interactions (also called forces) of nature.

Electric field
Effects of an electric field. The girl is touching an electrostatic generator, which charges her body with a high voltage. Her hair, which is charged with the same polarity, is repelled by the electric field of her head and stands out from her head.
Common symbols
SI unitvolt per meter (V/m)
In SI base unitsm⋅kg⋅s−3⋅A−1

Electric fields are important in many areas of physics, and are exploited in electrical technology. In atomic physics and chemistry, for instance, the electric field is the attractive force holding the atomic nucleus and electrons together in atoms. It is also the force responsible for chemical bonding between atoms that result in molecules.

The electric field is defined as a vector field that associates to each point in space the (electrostatic or Coulomb) force per unit of charge exerted on an infinitesimal positive test charge at rest at that point.[4][5][6] The derived SI unit for the electric field is the volt per meter (V/m), which is equal to the newton per coulomb (N/C).[7]

Share this article:

This article uses material from the Wikipedia article Electric field, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.