Erdős_distinct_distances_problem

Erdős distinct distances problem

Erdős distinct distances problem

Add article description


In discrete geometry, the Erdős distinct distances problem states that every set of points in the plane has a nearly-linear number of distinct distances. It was posed by Paul Erdős in 1946[1][2] and almost proven by Larry Guth and Nets Katz in 2015.[3][4][5]


The conjecture

In what follows let g(n) denote the minimal number of distinct distances between n points in the plane, or equivalently the smallest possible cardinality of their distance set. In his 1946 paper, Erdős proved the estimates

for some constant . The lower bound was given by an easy argument. The upper bound is given by a square grid. For such a grid, there are numbers below n which are sums of two squares, expressed in big O notation; see Landau–Ramanujan constant. Erdős conjectured that the upper bound was closer to the true value of g(n), and specifically that (using big Omega notation) holds for every c < 1.

Partial results

Paul Erdős' 1946 lower bound of g(n) = Ω(n1/2) was successively improved to:

  • g(n) = Ω(n4/5/log n) by Fan Chung, Endre Szemerédi, and William T. Trotter in 1992,[8]
  • g(n) = Ω(n4/5) by László A. Székely in 1993,[9]
  • g(n) = Ω(n6/7) by József Solymosi and Csaba D. Tóth in 2001,[10]
  • g(n) = Ω(n(4e/(5e 1)) ɛ) by Gábor Tardos in 2003,[11]
  • g(n) = Ω(n((48 14e)/(55 16e)) ɛ) by Nets Katz and Gábor Tardos in 2004,[12]
  • g(n) = Ω(n/log n) by Larry Guth and Nets Katz in 2015.[3]

Higher dimensions

Erdős also considered the higher-dimensional variant of the problem: for let denote the minimal possible number of distinct distances among points in -dimensional Euclidean space. He proved that and and conjectured that the upper bound is in fact sharp, i.e., . József Solymosi and Van H. Vu obtained the lower bound in 2008.[13]

See also


References

  1. Erdős, Paul (1946). "On sets of distances of points" (PDF). American Mathematical Monthly. 53 (5): 248–250. doi:10.2307/2305092. JSTOR 2305092.
  2. Garibaldi, Julia; Iosevich, Alex; Senger, Steven (2011), The Erdős Distance Problem, Student Mathematical Library, vol. 56, Providence, RI: American Mathematical Society, ISBN 978-0-8218-5281-1, MR 2721878
  3. Guth, Larry; Katz, Nets Hawk (2015). "On the Erdős distinct distances problem in the plane". Annals of Mathematics. 181 (1): 155–190. arXiv:1011.4105. doi:10.4007/annals.2015.181.1.2. MR 3272924. Zbl 1310.52019.
  4. Moser, Leo (1952). "On the different distances determined by points". American Mathematical Monthly. 59 (2): 85–91. doi:10.2307/2307105. JSTOR 2307105. MR 0046663.
  5. Székely, László A. (1993). "Crossing numbers and hard Erdös problems in discrete geometry". Combinatorics, Probability and Computing. 11 (3): 1–10. doi:10.1017/S0963548397002976. MR 1464571. S2CID 36602807.
  6. Katz, Nets Hawk; Tardos, Gábor (2004). "A new entropy inequality for the Erdős distance problem". In Pach, János (ed.). Towards a theory of geometric graphs. Contemporary Mathematics. Vol. 342. Providence, RI: American Mathematical Society. pp. 119–126. doi:10.1090/conm/342/06136. ISBN 978-0-8218-3484-8. MR 2065258.
  7. Solymosi, József; Vu, Van H. (2008). "Near optimal bounds for the Erdős distinct distances problem in high dimensions". Combinatorica. 28: 113–125. doi:10.1007/s00493-008-2099-1. MR 2399013. S2CID 2225458.

Share this article:

This article uses material from the Wikipedia article Erdős_distinct_distances_problem, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.