# Fermat's Last Theorem

In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation an + bn = cn for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many solutions.

Field The 1670 edition of Diophantus's Arithmetica includes Fermat's commentary, referred to as his "Last Theorem" (Observatio Domini Petri de Fermat), posthumously published by his son. Number theory For any integer n > 2, the equation an + bn = cn has no positive integer solutions. Pierre de Fermat c. 1637 Andrew Wiles Released 1994Published 1995

The proposition was first stated as a theorem by Pierre de Fermat around 1637 in the margin of a copy of Arithmetica; Fermat added that he had a proof that was too large to fit in the margin. Although other statements claimed by Fermat without proof were subsequently proven by others and credited as theorems of Fermat (for instance, Fermat's theorem on sums of two squares), Fermat's Last Theorem resisted proof, leading to doubt that Fermat ever had a correct proof and it becoming known as a conjecture rather than a theorem. After 358 years of effort by mathematicians, the first successful proof was released in 1994 by Andrew Wiles, and formally published in 1995; it was described as a "stunning advance" in the citation for Wiles's Abel Prize award in 2016. It also proved much of the modularity theorem and opened up entire new approaches to numerous other problems and mathematically powerful modularity lifting techniques.

The unsolved problem stimulated the development of algebraic number theory in the 19th century and the proof of the modularity theorem in the 20th century. It is among the most notable theorems in the history of mathematics and prior to its proof was in the Guinness Book of World Records as the "most difficult mathematical problem" in part because the theorem has the largest number of unsuccessful proofs.