Fezouata

Fezouata Formation

Fezouata Formation

Add article description


The Fezouata Formation or Fezouata Shale is a geological formation in Morocco which dates to the Early Ordovician.[2][3][4][5] It was deposited in a marine environment, and is known for its exceptionally preserved fossils, filling an important preservational window beyond the earlier and more common Cambrian Burgess shale-type deposits.[6] The fauna of this geological unit is often described as the Fezouata biota, and the particular strata within the formation which exhibit exceptional preservation are generally termed the Fezouata Lagerstätte.

Quick Facts Type, Underlies ...

Biota

Over 1,500 non-mineralized specimens, representing 50 distinct taxa that have a composition similar to earlier Burgess Shale type biotas, have been recovered from the formations in addition to a less abundant shelly fauna.[6] The make-up of the community varies significantly through the stratigraphic sequence, with both abundances and faunal composition changing as time progresses.[6] Major burrowing is not present, but there are small (1-3 mm wide) burrows in the sediment, which may indicate that there is not enough oxygen in the water or sediment.[6] Particularly notable is the presence of bryozoa and graptolites,[6] forms that are absent in the Cambrian period. Diverse echinoderms indicate a normal range of salinity, and the overall shelly assemblage is not significantly different from the normal shelly fauna expected in open Ordovician waters.[6] The non-mineralized cohort contains a range of forms familiar from the Burgess Shale: Demosponges,[7] lobopods, barnacles, annelids, radiodonts (e.g. Aegirocassis),[8] possible halkieriids, marrellomorphs, paleoscolecid worms, nektaspids, skaniids as well as the expected problematica. Other Ordovician oddballs are also present, including mitrates,[9] machaeridians,[10] cheloniellids and xiphosurans in abundance.[6]

Depositional setting

South Polar paleogeography of the Middle Ordovician, 460 Ma

The fossiliferous strata were deposited just above storm wave base (offshore to lower shoreface transition), at between 50 and 150 metres (160 and 490 ft) water depth. Organisms were likely buried in situ.[11] Because of its placement above storm wave base, storms would have mobilized sediment that could be quickly deposited, trapping animals and leading to their preservation.[6][12] Consequently, the assemblage is dominated by benthic organisms.[6]

Preservation

Fossils of the Fezouata Formation, which are usually squashed flat (although some do retain some degree of their original three-dimensionality) are often coated with a dusting of pyrite, and tin; this aspect of the fossil preservation is very similar to that at Chengjiang.[6] Non-mineralized appendages are often preserved.[6] While the formation as a whole is over 1,000 metres (3,300 ft) thick, only two intervals, 25 metres (82 ft) and 15 metres (49 ft) thick, provide exceptional preservation.[13][14] Both of these intervals are located near the top of the lower formation, corresponding to the Araneograptus murrayi and Hunnegraptus copiosus graptolite zones respectively.[11]

Location and stratigraphy

The fossils occur within an area of 500 square kilometres (190 sq mi), in southeast Morocco's Draa Valley, north of Zagora. Stratigraphically productive layers are found through a 1.1 kilometres (0.68 mi)-thick column of rock that spans the Tremadocian and Floian epochs.[6] Two stratigraphic intervals of the formation are fossiliferous: the lower is Late Tremadocian and sits 260 to 330 metres (850 to 1,080 ft) above the base of the formation; the upper, at 570 to 620 metres (1,870 to 2,030 ft), is mid-Floian in age.[1]

History

The Lagerstätten were first identified in the late 1990s when a local fossil collector, Ben Moula, showed some of the finds to a PhD student who was then working in the area.[15][16]

IUGS geological heritage site

In respect of the 'exceptional fossil preservation bridging the Cambrian Explosion and the Great Ordovician Biodiversification', the International Union of Geological Sciences (IUGS) included the 'Ordovician Fezouata Shale Fossil Site at Jbeltizagzaouine' in its assemblage of 100 'geological heritage sites' around the world in a listing published in October 2022. The organisation defines an IUGS Geological Heritage Site as 'a key place with geological elements and/or processes of international scientific relevance, used as a reference, and/or with a substantial contribution to the development of geological sciences through history.'[17]

Paleobiota

After[18] and subsequent literature:

Radiodonts

Apart from the three named species of Fezouata radiodonts, three other unnamed species occur in the formation: a third species of Pseudoangustidontus, an aegirocassisine, and a sediment-sifting hurdiid.[19]

More information Radiodonts of the Fezouata Formation, Genus ...

Trilobites

The largest trilobite individuals in the Fezouata Formation tend to inhabit deep oxygenated waters with minimal influence from storms or larger predators.[23]

More information Trilobites of the Fezouata Formation, Genus ...

Other arthropods

Many arthropods of the Fezouata Biota remain unnamed and undescribed. These include synziphosurines, xiphosurans (horseshoe crabs), eurypterids, chasmataspidids, phyllocarids, ostracods, a canadaspidid, a leanchoiliid, a cheloniellid (Eoduslia?),[41] a possible retifaciid, and a lepadomorph barnacle.[18]

More information Other arthropods of the Fezouata Formation, Genus ...

Echinoderms

Many echinoderm species of the Fezouata Biota remain unnamed and undescribed. These include representatives of chauvelicystids, other cornutes, anomalacystitids, mitrocystitids, eocrinoids, rhenopyrgids, and somasteroids.[48] Fezouata stylophoran fossils include soft tissue preserved among the skeletal elements, helping to unravel controversial details of their anatomy and ecology.[49][50]

Specific echinoderm species may form dense fossil beds in some layers of the formation, a phenomenon which is particularly common in the mid-late Tremadocian (Araneograptus murrayi graptolite zone).[48] Most echinoderm beds are dominated by only a few species, often representatives of stylophorans or the eocrinoid Rhopalocystis, with few other animal fossils. Through nearly the entire the formation, small Rhopalocystis species dominate "meadow"-like ecosystems in shallow waters impacted by storms. In the youngest layers of the formations, diploporites usurp this niche. Conversely, stylophorans are opportunistic colonizers of deeper low-oxygen seabeds in some intervals of the Araneograptus murrayi zone. Echinoderms are uncommon at intermediate depths, which have a higher proportion of brachiopod and trilobite fossils.[48]

Nevertheless, there are quite a few exceptions which contradict these broad rules. Many sites record diverse deep-water ecosystems protected from both storms and insufficient oxygen. Numerous species of echinoderms and other invertebrates coexist at these localities, even if one echinoderm species outnumbers other fossils at any given time. Large Rhopalocystis species, Macrocystella, Plasiacystis, and Balantiocystis are common components of these assemblages.[48]

Fezouata reconstructs the uneven nature of the Cambrian-Ordovician transition of echinoderm faunas. Cosmopolitan Late Cambrian hallmarks (such as cornute stylophorans) maintian their abundance in oxygen-poor areas, while newer groups (crinoids, diploporites, asterozoans) make inroads into more oxygenated waters. The rarity of carbonate platforms and hard substrates in the Gondwanan area delayed the diversification of crinoids and edrioasteroids in the region. This also provided more space for the establishment of a distinctive South Polar ecosystem dominated by eocrinoids, mitrates, solutans, and eventually diploporites.[48]

More information Echinoderms of the Fezouata Formation, Genus ...

Molluscs

More information Molluscs of the Fezouata Formation, Genus ...

Conodonts

Conodonts from the Fezouata Formation are mostly coniform elements of Early Ordovician species.[60] Overall diversity is rather low, and species which were common in temperate and tropical seas are apparently absent. The Fezouata Formation appears to be an exemplar of the 'subpolar domain', an assemblage of cold-water coastal conodonts native to the South Polar region of the Early Ordovician. Similar conodont faunas are known from Early Ordovician deposits in Central Europe, which was also located near the South Pole. The 'subpolar domain' survived into the Middle Ordovician and expanded into areas now found in the Middle East.[60]

Fezouata conodonts are difficult to correlate to biostratigraphic systems in nearby temperate regions such as Baltica. Most species appear to correspond to the time interval stretching from the Oelandodus elongatus-Acodus deltatus subzone of the Paroistodus proteus zone (uppermost Tremadocian) up through the Prioniodus oepiki zone (lower Floian).[60]

More information Conodonts of the Fezouata Formation, Genus ...

Graptolites

Graptolites in the Fezouata Formation are important for biostratigraphic correlation to other regions. Most species found in the formation are assigned to planktic (graptoloid) groups, though some mesh-shaped taxa (like Araneograptus and Rhabdinopora) may have been transitional between sessile (dendroid) graptolites and free-floating graptoloids.[61] Sessile forms, such as Didymograptus, Dictyonema, Webbyites, and rhabdopleurids, are also present but much more rare.[62]

The graptolites of the Fezouata Formation are distributed over 10 biozones. In order, these zones are: the Anisograptus matanensis zone (1), Rhabdinopora flabelliformis anglica zone (2), “Adelograptustenellus zone (3), Aorograptus victoriae zone (4), Araneograptus murrayi zone (5), Hunnegraptus copiosus zone (6), ?Cymatograptus protobalticus zone (7), ?Baltograptus jacksoni zone (8), Baltograptus minutus zone (9), and the “Azygograptus interval” (10). Not all of the index taxa which these zones are named for are known from the Fezouata Formation. The Tremadocian-Floian boundary is approximately at the level between the Hunnegraptus copiosus and ?Cymatograptus probalticus zones.[61]

The most well-preserved fossils in the Fezouata Formation generally come from strata of the late Tremadocian (late Araneograptus murrayi zone and early Hunnegraptus copiosus zone) and the mid-late Floian (late Baltograptus minutus zone and early "Azygograptus interval").[61]

More information Graptolites of the Fezouata Formation, Genus ...

Brachiopods

More information Brachiopods of the Fezouata Formation, Genus ...

Sponges

Many sponges from the Fezouata biota remain unnamed, including protomonaxonid demosponges (leptomitids, "choiids", hamptoniids, piraniids), a hazeliid, reticulosan hexactinellids (asthenospongiids,[7] etc.), and other indeterminate forms.[64] Many of the sponges have affinities with Cambrian taxa common in Burgess Shale-type faunas.[7] Though at least 27 sponge species have been recorded in the biota, nearly all occurrences are monospecific death assemblages, with the exception of Pirania auraeum, which has a broader and less dense distribution in the formation. Periodic unstable seafloor conditions (potentially related to seasonal disruptions) would have favored species-poor colonization events over short time periods, rather than a stable and diverse equilibrium.[64]

This is unusual relative to other Ordovician sponge ecosystems, such as the Builth Inlier of Wales. Another difference is how Fezouata's sponge fauna consists mostly of protomonaxonids, with a few reticulosans occupying course-grained shallow seabeds. Conversely, in Wales there is a clear succession of diverse and sturdy lithistids and thick-walled hexactinellids in shallow reefs and other energetic areas, with protomonaxonids at intermediate depths, and reticulosans in the deepest and calmest environments.[64]

More information Sponges of the Fezouata Formation, Genus ...

Other animals

Many animals from the Fezouata biota remain unnamed and undescribed, including bryozoans, chordate "dermal plates", annelid worms, priapulids, problematica, and at least five new species of lobopod, including an armored form.[18][6]

More information Other animals of the Fezouata Formation, Genus ...

Other organisms

Chitinozoans, acritarchs, and algae have been recorded from the formation.[18][28][70]


References

  1. Lefebvre, Bertrand; Gutiérrez-Marco, Juan C; Lehnert, Oliver; Martin, Emmanuel L. O; Nowak, Hendrik; Akodad, Mustapha; El Hariri, Khadija; Servais, Thomas (2017). "Age calibration of the Lower Ordovician Fezouata Lagerstätte, Morocco". Lethaia. 51 (2): 296–311. doi:10.1111/let.12240.
  2. Van Roy, P.; Orr, P. J.; Botting, J. P.; Muir, L. A.; Vinther, J.; Lefebvre, B.; Hariri, K. E.; Briggs, D. E. G. (2010). "Ordovician faunas of Burgess Shale type". Nature. 465 (7295): 215–8. Bibcode:2010Natur.465..215V. doi:10.1038/nature09038. PMID 20463737. S2CID 4313285.
  3. Botting, J. (2007). "'Cambrian' demosponges in the Ordovician of Morocco: Insights into the early evolutionary history of sponges". Geobios. 40 (6): 737–748. Bibcode:2007Geobi..40..737B. doi:10.1016/j.geobios.2007.02.006.
  4. Van Roy, P.; Briggs, D. E. G. (2011). "A giant Ordovician anomalocaridid". Nature. 473 (7348): 510–513. Bibcode:2011Natur.473..510V. doi:10.1038/nature09920. PMID 21614078. S2CID 205224390.
  5. Lefebvre, B.; Botting, J. (2007). "First report of the mitrate Peltocystis cornuta Thoral (Echinodermata, Stylophora) in the Lower Ordovician of central Anti-Atlas (Morocco)". Annales de Paléontologie. 93 (3): 183. Bibcode:2007AnPal..93..183L. doi:10.1016/j.annpal.2007.06.003.
  6. Vinther, Jakob; Van Roy, Peter; Briggs, Derek E. G. (2008). "Machaeridians are Palaeozoic armoured annelids". Nature. 451 (7175): 185–188. Bibcode:2008Natur.451..185V. doi:10.1038/nature06474. ISSN 1476-4687. PMID 18185586.
  7. Martin, Emmanuel L.O.; Pittet, Bernard; Gutiérrez-Marco, Juan-Carlos; Vannier, Jean; El Hariri, Khadija; Lerosey-Aubril, Rudy; Masrour, Moussa; Nowak, Hendrik; Servais, Thomas; Vandenbroucke, Thijs R.A.; Van Roy, Peter; Vaucher, Romain; Lefebvre, Bertrand (2016). "The Lower Ordovician Fezouata Konservat-Lagerstätte from Morocco: Age, environment and evolutionary perspectives". Gondwana Research. 34: 274–283. Bibcode:2016GondR..34..274M. doi:10.1016/j.gr.2015.03.009. ISSN 1342-937X.
  8. Saleh, Farid; Candela, Yves; Harper, David A. T.; Polechová, Marika; Lefebvre, Bertrand; Pittet, Bernard. "Storm-Induced Community Dynamics in the Fezouata Biota (Lower Ordovician, Morocco)". (limited access to full article) geoscienceworld.org. Society for Sedimentary Geology PALAIOS, print edition: 21 December 2018, pp. 535-541 (Vol. 33, No. 12). Retrieved 1 March 2019.
  9. Saleh, Farid; Pittet, Bernard; Perrillat, Jean-Philippe; Lefebvre, Bertrand. "Orbital Control on Exceptional Fossil Preservation (abstract only)". geoscienctworld.org (subscription w/ free abstract). Geology (magazine published) 1 February 2019. Retrieved 1 March 2019.
  10. "Shifts in Earth's Orbit Increase the Chances of Spectacular Fossils". The Economist. The Economist, print edition: January 26th 2019, p. 72 (1/2-page based on article in Geology--in prior footnote--1/Feb/2019). Retrieved 1 March 2019.
  11. Van Roy, P; Lefebvre, B; El Hariri, K; Hafid, A (2008). Exceptionally Preserved Faunas from the Lower Ordovician of the Anti-Atlas, Morocco (PDF). First international Conference and Exhibition, Marrakech, Morocco.
  12. Jones, N. (2010). "Weird wonders lived past the Cambrian". Nature. doi:10.1038/news.2010.234.
  13. "The First 100 IUGS Geological Heritage Sites" (PDF). IUGS International Commission on Geoheritage. IUGS. Retrieved 13 November 2022.
  14. Van Roy, Peter; Briggs, Derek E. G.; Gaines, Robert R. (September 2015). "The Fezouata fossils of Morocco; an extraordinary record of marine life in the Early Ordovician". Journal of the Geological Society. 172 (5): 541–549. Bibcode:2015JGSoc.172..541V. doi:10.1144/jgs2015-017. ISSN 0016-7649. S2CID 129319753.
  15. Saleh, Farid; Vaucher, Romain; Vidal, Muriel; Hariri, Khadija El; Laibl, Lukáš; Daley, Allison C.; Gutiérrez-Marco, Juan Carlos; Candela, Yves; Harper, David A. T.; Ortega-Hernández, Javier; Ma, Xiaoya; Rida, Ariba; Vizcaïno, Daniel; Lefebvre, Bertrand (2022-12-13). "New fossil assemblages from the Early Ordovician Fezouata Biota". Scientific Reports. 12 (1): 20773. Bibcode:2022NatSR..1220773S. doi:10.1038/s41598-022-25000-z. ISSN 2045-2322.
  16. Van Roy, Peter; Tetlie, O. Erik (2006). "A spinose appendage fragment of a problematic arthropod from the Early Ordovician of Morocco" (PDF). Acta Palaeontologica Polonica. 51 (2): 239–246.
  17. Saleh, Farid; Vidal, Muriel; Laibl, Lukáš; Sansjofre, Pierre; Gueriau, Pierre; Pérez-Peris, Francesc; Lustri, Lorenzo; Lucas, Victoire; Lefebvre, Bertrand; Pittet, Bernard; El Hariri, Khadija; Daley, Allison C. (2021). "Large trilobites in a stress-free Early Ordovician environment". Geological Magazine. 158 (2): 261–270. Bibcode:2021GeoM..158..261S. doi:10.1017/S0016756820000448. ISSN 0016-7568.
  18. Martin, Emmanuel L.O.; Vidal, Muriel; Vizcaïno, Daniel; Vaucher, Romain; Sansjofre, Pierre; Lefebvre, Bertrand; Destombes, Jacques (2016). "Biostratigraphic and palaeoenvironmental controls on the trilobite associations from the Lower Ordovician Fezouata Shale of the central Anti-Atlas, Morocco". Palaeogeography, Palaeoclimatology, Palaeoecology. 460: 142–154. Bibcode:2016PPP...460..142M. doi:10.1016/j.palaeo.2016.06.003.
  19. Vannier, Jean; Vidal, Muriel; Marchant, Robin; El Hariri, Khadija; Kouraiss, Khaoula; Pittet, Bernard; El Albani, Abderrazak; Mazurier, Arnaud; Martin, Emmanuel (2019-10-17). "Collective behaviour in 480-million-year-old trilobite arthropods from Morocco". Scientific Reports. 9 (1): 14941. Bibcode:2019NatSR...914941V. doi:10.1038/s41598-019-51012-3. ISSN 2045-2322. PMC 6797724. PMID 31624280.
  20. Pérez-Peris, Francesc; Laibl, Lukáš; Vidal, Muriel; Daley, Allison C. (2021). "Systematics, morphology, and appendages of an Early Ordovician pilekiine trilobite Anacheirurus from Fezouata Shale and the early diversification of Cheiruridae" (PDF). Acta Palaeontologica Polonica. 66 (4): 857–877. doi:10.4202/app.00902.2021.
  21. Laibl, Lukáš; Drage, Harriet B.; Pérez-Peris, Francesc; Schöder, Sebastian; Saleh, Farid; Daley, Allison C. (2023). "Babies from the Fezouata Biota: Early developmental trilobite stages and their adaptation to high latitudes". Geobios. 81: 31–50. Bibcode:2023Geobi..81...31L. doi:10.1016/j.geobios.2023.06.005.
  22. Lefebvre, Bertrand; El Hariri, Khadija; Lerosey-Aubril, Rudy; Servais, Thomas; Van Roy, Peter (2016). "The Fezouata Shale (Lower Ordovician, Anti-Atlas, Morocco): A historical review" (PDF). Palaeogeography, Palaeoclimatology, Palaeoecology. 460: 7–23. Bibcode:2016PPP...460....7L. doi:10.1016/j.palaeo.2015.10.048.
  23. Fortey, Richard A. (2009). "A New Giant Asaphid Trilobite from the Lower Ordovician of Morocco". Memoirs of the Association of Australasian Palaeontologists. 37: 9–16.
  24. Edgecombe, Gregory D.; Fortey, Richard. A. (2023). "A novel antennal form in trilobites". Journal of Paleontology. 97 (1): 152–157. Bibcode:2023JPal...97..152E. doi:10.1017/jpa.2022.59. ISSN 0022-3360.
  25. Corbacho, Joan; Vela, Joan Antoni (2010). "Giant Trilobites from Lower Ordovician of Morocco". Batalleria. 15: 3–34.
  26. Hopkins, Melanie J.; Gutiérrez-Marco, Juan Carlos; Di Silvestro, Gianpaolo (2024-01-15). "First occurrence of well-preserved Ordovician trilobites of the family Olenidae from Africa". Journal of Paleontology: 1–10. doi:10.1017/jpa.2023.60. ISSN 0022-3360.
  27. Fortey, Richard A. (2012). "The first known complete Lichakephalid trilobite, lower Ordovician of Morocco". Memoirs of the Association of Australasian Palaeontologists. 42: 1–7.
  28. Gutiérrez-Marco, Juan C.; García-Bellido, Diego C.; Rábano, Isabel; Sá, Artur A. (2017-01-10). "Digestive and appendicular soft-parts, with behavioural implications, in a large Ordovician trilobite from the Fezouata Lagerstätte, Morocco". Scientific Reports. 7 (1): 39728. Bibcode:2017NatSR...739728G. doi:10.1038/srep39728. ISSN 2045-2322. PMC 5223178. PMID 28071705.
  29. Corbacho, Joan; Vela, Joan A. "Parvilichas marochii: New genus and species of Lichidae from the Zagora region (Morocco); Early Ordovician (Floian)". Scripta Musei Geologici Seminarii Barcinonensis [Ser. palaeontologica]. 14: 3–13.
  30. Corbacho Amado, Joan; López-Soriano, Francisco J.; Lemke, Ulrich; Morrison, Scott; Hammond, Kieth (2018). "Diversity and Distribution of the Genus Platypeltoides (Nileidae) in Morocco". American Journal of Bioscience and Bioengineering. 6 (2): 13–20. doi:10.11648/j.bio.20180602.11. ISSN 2328-5885.
  31. Gutiérrez-Marco, Juan Carlos; Rábano, Isabel; García-Bellido, Diego C. (2019), Owen, Alan W.; Bruton, David L. (eds.), "The nileid trilobite Symphysurus from upper Tremadocian strata of the Moroccan Anti-Atlas: taxonomic reappraisal and palaeoenvironmental implications", Fossils and Strata, vol. 64, John Wiley & Sons, Ltd, pp. 155–171, doi:10.1002/9781119564249.ch7, ISBN 978-1-119-56423-2
  32. Drage, Harriet B.; Vandenbroucke, Thijs R.A.; Van Roy, Peter; Daley, Allison C. (2019). "Sequence of post-moult exoskeleton hardening preserved in a trilobite mass moult assemblage from the Lower Ordovician Fezouata Konservat-Lagerstätte, Morocco" (PDF). Acta Palaeontologica Polonica. 64 (2): 261–273. doi:10.4202/app.00582.2018.
  33. Sumrall, Colin D.; Zamora, Samuel (2011). "Ordovician edrioasteroids from Morocco: faunal exchanges across the Rheic Ocean". Journal of Systematic Palaeontology. 9 (3): 425–454. Bibcode:2011JSPal...9..425S. doi:10.1080/14772019.2010.499137. ISSN 1477-2019.
  34. Laibl, Lukáš; Gueriau, Pierre; Saleh, Farid; Pérez-Peris, Francesc; Lustri, Lorenzo; Drage, Harriet B.; Bath Enright, Orla G.; Potin, Gaëtan J.-M.; Daley, Allison C. (2023). "Early developmental stages of a Lower Ordovician marrellid from Morocco suggest simple ontogenetic niche differentiation in early euarthropods". Frontiers in Ecology and Evolution. 11. doi:10.3389/fevo.2023.1232612. ISSN 2296-701X.
  35. Drage, Harriet B.; Legg, David A.; Daley, Allison C. (2023). "Novel marrellomorph moulting behaviour preserved in the Lower Ordovician Fezouata Shale, Morocco". Frontiers in Ecology and Evolution. 11. doi:10.3389/fevo.2023.1226924. ISSN 2296-701X.
  36. Pérez-Peris, Francesc; Laibl, Lukáš; Lustri, Lorenzo; Gueriau, Pierre; Antcliffe, Jonathan B; Bath Enright, Orla G; Daley, Allison C (2021). "A new nektaspid euarthropod from the Lower Ordovician strata of Morocco". Geological Magazine. 158 (3): 509–517. Bibcode:2021GeoM..158..509P. doi:10.1017/S001675682000062X. ISSN 0016-7568.
  37. Lefebvre, Bertrand; Allaire, Ninon; Guensburg, Thomas E.; Hunter, Aaron W.; Kouraïss, Khaoula; Martin, Emmanuel L.O.; Nardin, Elise; Noailles, Fleur; Pittet, Bernard; Sumrall, Colin D.; Zamora, Samuel (2016). "Palaeoecological aspects of the diversification of echinoderms in the Lower Ordovician of central Anti-Atlas, Morocco". Palaeogeography, Palaeoclimatology, Palaeoecology. 460: 97–121. Bibcode:2016PPP...460...97L. doi:10.1016/j.palaeo.2016.02.039.
  38. Lefebvre, Bertrand; Guensburg, Thomas E.; Martin, Emmanuel L.O.; Mooi, Rich; Nardin, Elise; Nohejlová, Martina; Saleh, Farid; Kouraïss, Khaoula; El Hariri, Khadija; David, Bruno (2019). "Exceptionally preserved soft parts in fossils from the Lower Ordovician of Morocco clarify stylophoran affinities within basal deuterostomes". Geobios. 52: 27–36. Bibcode:2019Geobi..52...27L. doi:10.1016/j.geobios.2018.11.001.
  39. Saleh, Farid; Lefebvre, Bertrand; Dupichaud, Christophe; Martin, Emmanuel L.O.; Nohejlová, Martina; Spaccesi, Léa (2023). "Skeletal elements controlled soft-tissue preservation in echinoderms from the Early Ordovician Fezouata Biota". Geobios. 81: 51–66. Bibcode:2023Geobi..81...51S. doi:10.1016/j.geobios.2023.08.001.
  40. Dupichaud, Christophe; Lefebvre, Bertrand; Milne, Claire H.; Mooi, Rich; Nohejlová, Martina; Roch, Renaud; Saleh, Farid; Zamora, Samuel (2023). "Solutan echinoderms from the Fezouata Shale Lagerstätte (Lower Ordovician, Morocco): diversity, exceptional preservation, and palaeoecological implications". Frontiers in Ecology and Evolution. 11. doi:10.3389/fevo.2023.1290063. ISSN 2296-701X.
  41. Allaire, Ninon; Lefebvre, Bertrand; Nardin, Elise; Martin, Emmanuel L.O.; Vaucher, Romain; Escarguel, Gilles (2017). "Morphological disparity and systematic revision of the eocrinoid genus Rhopalocystis (Echinodermata, Blastozoa) from the Lower Ordovician of the central Anti-Atlas (Morocco)". Journal of Paleontology. 91 (4): 685–714. Bibcode:2017JPal...91..685A. doi:10.1017/jpa.2017.6. ISSN 0022-3360.
  42. Lehnert, Oliver; Nowak, Hendrik; Sarmiento, Graciela N.; Gutiérrez-Marco, Juan Carlos; Akodad, Mustapha; Servais, Thomas (October 2016). "Conodonts from the Lower Ordovician of Morocco — Contributions to age and faunal diversity of the Fezouata Lagerstätte and peri-Gondwana biogeography". Palaeogeography, Palaeoclimatology, Palaeoecology. 460: 50–61. Bibcode:2016PPP...460...50L. doi:10.1016/j.palaeo.2016.03.023.
  43. Gutiérrez-Marco, Juan Carlos; Martin, Emmanuel L.O. (October 2016). "Biostratigraphy and palaeoecology of Lower Ordovician graptolites from the Fezouata Shale (Moroccan Anti-Atlas)". Palaeogeography, Palaeoclimatology, Palaeoecology. 460: 35–49. Bibcode:2016PPP...460...35G. doi:10.1016/j.palaeo.2016.07.026.
  44. Nanglu, Karma; Waskom, Madeleine E.; Richards, Jared C.; Ortega-Hernández, Javier (2023-10-11). "Rhabdopleurid epibionts from the Ordovician Fezouata Shale biota and the longevity of cross-phylum interactions". Communications Biology. 6 (1): 1002. doi:10.1038/s42003-023-05377-x. ISSN 2399-3642. PMC 10567727. PMID 37821659.
  45. Botting, Joseph P. (2016). "Diversity and ecology of sponges in the Early Ordovician Fezouata Biota, Morocco". Palaeogeography, Palaeoclimatology, Palaeoecology. 460: 75–86. Bibcode:2016PPP...460...75B. doi:10.1016/j.palaeo.2016.05.018.
  46. Van Iten, Heyo; Muir, Lucy; Simões, Marcello G.; Leme, Juliana M.; Marques, Antonio C.; Yoder, Naomi (October 2016). "Palaeobiogeography, palaeoecology and evolution of Lower Ordovician conulariids and Sphenothallus (Medusozoa, Cnidaria), with emphasis on the Fezouata Shale of southeastern Morocco". Palaeogeography, Palaeoclimatology, Palaeoecology. 460: 170–178. Bibcode:2016PPP...460..170V. doi:10.1016/j.palaeo.2016.03.008. hdl:11449/161915.
  47. Martin, Emmanuel L.O.; Lerosey-Aubril, Rudy; Vannier, Jean (October 2016). "Palaeoscolecid worms from the Lower Ordovician Fezouata Lagerstätte, Morocco: Palaeoecological and palaeogeographical implications". Palaeogeography, Palaeoclimatology, Palaeoecology. 460: 130–141. Bibcode:2016PPP...460..130M. doi:10.1016/j.palaeo.2016.04.009.
  48. Kouraiss, Khaoula; El Hariri, Khadija; El Albani, Abderrazak; Azizi, Abdelfattah; Mazurier, Arnaud; Vannier, Jean (2018). "X-ray microtomography applied to fossils preserved in compression: Palaeoscolescid worms from the Lower Ordovician Fezouata Shale". Palaeogeography, Palaeoclimatology, Palaeoecology. 508: 48–58. Bibcode:2018PPP...508...48K. doi:10.1016/j.palaeo.2018.07.012.
  49. Valent, Martin (2015-10-31). "Pauxillites thaddei a new lower Ordovician hyolith from Morocco" (PDF). Acta Musei Nationalis Pragae, Series B, Historia Naturalis / Sborník Národního muzea řada B, přírodní vědy: 51–54. doi:10.14446/AMNP.2015.51. ISSN 1804-6479.
  50. Parry, Luke A.; Edgecombe, Gregory D.; Sykes, Dan; Vinther, Jakob (2019-07-24). "Jaw elements in Plumulites bengtsoni confirm that machaeridians are extinct armoured scaleworms". Proceedings of the Royal Society B: Biological Sciences. 286 (1907): 20191247. doi:10.1098/rspb.2019.1247. ISSN 0962-8452. PMC 6661337. PMID 31337310.
  51. Nowak, Hendrik; Servais, Thomas; Pittet, Bernard; Vaucher, Romain; Akodad, Mustapha; Gaines, Robert R.; Vandenbroucke, Thijs R.A. (2016). "Palynomorphs of the Fezouata Shale (Lower Ordovician, Morocco): Age and environmental constraints of the Fezouata Biota". Palaeogeography, Palaeoclimatology, Palaeoecology. 460: 62–74. Bibcode:2016PPP...460...62N. doi:10.1016/j.palaeo.2016.03.007.

Share this article:

This article uses material from the Wikipedia article Fezouata, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.