Flexoelectricity

Flexoelectricity

Flexoelectricity

Property of a dielectric material that exhibits electrical polarization induced by a strain gradient


Flexoelectricity is a property of a dielectric material whereby it exhibits a spontaneous electrical polarization induced by a strain gradient. Flexoelectricity is closely related to piezoelectricity, but while piezoelectricity refers to polarization due to uniform strain, flexoelectricity refers specifically to polarization due to strain that changes from point to point in the material. This nonuniform strain breaks centrosymmetry, meaning that unlike in piezoelectiricty, flexoelectric effects can occur in centrosymmetric crystal structures.[1] Flexoelectricity is not the same as Ferroelasticity. Inverse flexoelectricity, quite intuitively can be defined as generation of strain gradient due to polarization. Similarly extending on that, Converse flexoelectricity would refer to the process where a polarization gradient induces strain in a material.[2]

The electric polarization due to mechanical strain of in a dielectric is given by

where the first term corresponds to the direct piezoelectric effect and the second term corresponds to the flexoelectric polarization induced by the strain gradient.

Here, the flexoelectric coefficient, , is a fourth-rank polar tensor and is the coefficient corresponding to the direct piezoelectric effect.

See also


References

  1. Pavlo Zubko, Gustau Catalan, and Alexander K. Tagantsev (2013). "Flexoelectric Effect in Solids". Annual Review of Materials Research. 43: 387–421. Bibcode:2013AnRMS..43..387Z. doi:10.1146/annurev-matsci-071312-121634. hdl:10261/99362.{{cite journal}}: CS1 maint: multiple names: authors list (link)

Share this article:

This article uses material from the Wikipedia article Flexoelectricity, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.