# Frequency response

**Frequency response** is the quantitative measure of the output spectrum of a system or device in response to a stimulus, and is used to characterize the dynamics of the system. It is a measure of magnitude and phase of the output as a function of frequency, in comparison to the input. For a linear system, doubling the amplitude of the input will double the amplitude of the output, and summing two inputs produces an output that is the sum of the two corresponding outputs to the individual inputs. In addition, if the system is time-invariant (so LTI), then the frequency response also will not vary with time, and injecting a sine wave into the system at a given frequency will make the system respond at that same frequency with a certain magnitude and a certain phase angle relative to the input. Thus for LTI systems, the frequency response can be seen as applying the system's transfer function to a purely imaginary number argument representing the frequency of the sinusoidal excitation.[1]

This introduction and first section needs additional citations for verification. (August 2011) |

Two applications of frequency response analysis are related but have different objectives.

For an audio system, the objective may be to reproduce the input signal with no distortion. That would require a uniform (flat) magnitude of response up to the bandwidth limitation of the system, with the signal delayed by precisely the same amount of time at all frequencies. That amount of time could be seconds, or weeks or months in the case of recorded media.

In contrast, for a feedback apparatus used to control a dynamic system, the objective is to give the closed-loop system improved response as compared to the uncompensated system. The feedback generally needs to respond to system dynamics within a very small number of cycles of oscillation (usually less than one full cycle), and with a definite phase angle relative to the commanded control input. For feedback of sufficient amplification, getting the phase angle wrong can lead to instability for an open-loop stable system, or failure to stabilize a system that is open-loop unstable.

Digital filters may be used for both audio systems and feedback control systems, but since the objectives are different, generally the phase characteristics of the filters will be significantly different for the two applications.