Holomorphic function

In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space Cn. The existence of a complex derivative in a neighbourhood is a very strong condition: it implies that a holomorphic function is infinitely differentiable and locally equal to its own Taylor series (analytic). Holomorphic functions are the central objects of study in complex analysis.

A rectangular grid (top) and its image under a conformal map f (bottom).

Though the term analytic function is often used interchangeably with "holomorphic function", the word "analytic" is defined in a broader sense to denote any function (real, complex, or of more general type) that can be written as a convergent power series in a neighbourhood of each point in its domain. That all holomorphic functions are complex analytic functions, and vice versa, is a major theorem in complex analysis.[1]

Holomorphic functions are also sometimes referred to as regular functions.[2] A holomorphic function whose domain is the whole complex plane is called an entire function. The phrase "holomorphic at a point z0" means not just differentiable at z0, but differentiable everywhere within some neighbourhood of z0 in the complex plane.


Share this article:

This article uses material from the Wikipedia article Holomorphic function, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.