IC_package

List of integrated circuit packaging types

List of integrated circuit packaging types

Add article description


Integrated circuits are put into protective packages to allow easy handling and assembly onto printed circuit boards and to protect the devices from damage. A very large number of different types of package exist. Some package types have standardized dimensions and tolerances, and are registered with trade industry associations such as JEDEC and Pro Electron. Other types are proprietary designations that may be made by only one or two manufacturers. Integrated circuit packaging is the last assembly process before testing and shipping devices to customers.

A standard-sized 8-pin dual in-line package (DIP) containing a 555 IC.

Occasionally specially-processed integrated circuit dies are prepared for direct connections to a substrate without an intermediate header or carrier. In flip chip systems the IC is connected by solder bumps to a substrate. In beam-lead technology, the metallized pads that would be used for wire bonding connections in a conventional chip are thickened and extended to allow external connections to the circuit. Assemblies using "bare" chips have additional packaging or filling with epoxy to protect the devices from moisture.

Through-hole packages

Through-hole technology uses holes drilled through the printed circuit board (PCB) for mounting the components. The component has leads that are soldered to pads on the PCB to electrically and mechanically connect them to the PCB.

Three 14-pin (DIP14) plastic dual in-line packages containing IC chips.
More information Acronym, Full name ...

Surface mount

More information Acronym, Full name ...

Chip on board is a packaging technique that directly connects a die to a PCB, without an interposer or lead frame.

Chip carrier

A chip carrier is a rectangular package with contacts on all four edges. Leaded chip carriers have metal leads wrapped around the edge of the package, in the shape of a letter J. Leadless chip carriers have metal pads on the edges. Chip carrier packages may be made of ceramic or plastic and are usually secured to a printed circuit board by soldering, though sockets can be used for testing.

More information Acronym, Full name ...

Pin grid arrays

More information Acronym, Full name ...

Flat packages

More information Acronym, Full name ...

Small outline packages

A small outline integrated circuit (SOIC) is a surface-mounted integrated circuit (IC) package which occupies an area about 30–50% less than an equivalent dual in-line package (DIP), with a typical thickness being 70% less. They are generally available in the same pin-outs as their counterpart DIP ICs.

More information Acronym, Full name ...

Chip-scale packages

According to IPC's standard J-STD-012, Implementation of Flip Chip and Chip Scale Technology, in order to qualify as chip scale, the package must have an area no greater than 1.2 times that of the die and it must be a single-die, direct surface mountable package. Another criterion that is often applied to qualify these packages as CSPs is their ball pitch should be no more than 1 mm. Chip-scale package

Example WL-CSP devices sitting on the face of a U.S. penny. A SOT-23 device is shown (top) for comparison.
More information Acronym, Full name ...

Ball grid array

Ball grid array (BGA) uses the underside of the package to place pads with balls of solder in grid pattern as connections to PCB.[1][3]

More information Acronym, Full name ...

Transistor, diode, small-pin-count IC packages

A drawing of a ZN414 IC in a TO-18 package
  • MELF: Metal electrode leadless face (usually for resistors and diodes)
  • SOD: Small-outline diode.
  • SOT: Small-outline transistor (also SOT-23, SOT-223, SOT-323).
  • TO-XX: wide range of small pin count packages often used for discrete parts like transistors or diodes.
    • TO-3: Panel-mount with leads
    • TO-5: Metal can package with radial leads
    • TO-18: Metal can package with radial leads
    • TO-39
    • TO-46
    • TO-66: Similar shape to the TO-3 but smaller
    • TO-92: Plastic-encapsulated package with three leads
    • TO-99: Metal can package with eight radial leads
    • TO-100
    • TO-126: Plastic-encapsulated package with three leads and a hole for mounting on a heat sink
    • TO-220: Through-hole plastic package with a (usually) metal heat sink tab and three leads
    • TO-226[24]
    • TO-247:[25] Plastic-encapsulated package with three leads and a hole for mounting on a heat sink
    • TO-251:[25] Also called IPAK: SMT package similar to the DPAK but with longer leads for SMT or TH mounting
    • TO-252:[25] (also called SOT428, DPAK):[25] SMT package similar to the DPAK but smaller
    • TO-262:[25] Also called I2PAK: SMT package similar to the D2PAK but with longer leads for SMT or TH mounting
    • TO-263:[25] Also called D2PAK: SMT package similar to the TO-220 without the extended tab and mounting hole
    • TO-274:[25] Also called Super-247: SMT package similar to the TO-247 without the mounting hole

Dimension reference

Surface-mount

A general surface mount chip, with major dimensions.
C
Clearance between IC body and PCB
H
Total height
T
Lead thickness
L
Total carrier length
LW
Lead width
LL
Lead length
P
Pitch

Through-hole

A general through-hole pin chip, with major dimensions.
C
Clearance between IC body and board
H
Total height
T
Lead thickness
L
Total carrier length
LW
Lead width
LL
Lead length
P
Pitch
WB
IC body width
WL
Lead-to-lead width

Package dimensions

All measurements below are given in mm. To convert mm to mils, divide mm by 0.0254 (i.e., 2.54 mm / 0.0254 = 100 mil).

C
Clearance between package body and PCB.
H
Height of package from pin tip to top of package.
T
Thickness of pin.
L
Length of package body only.
LW
Pin width.
LL
Pin length from package to pin tip.
P
Pin pitch (distance between conductors to the PCB).
WB
Width of the package body only.
WL
Length from pin tip to pin tip on the opposite side.

Dual row

More information Image, Family ...

Quad rows

More information Image, Family ...

LGA

More information Package, x ...

Multi-chip packages

A variety of techniques for interconnecting several chips within a single package have been proposed and researched:

By terminal count

Example of component sizes, metric and imperial codes and comparison included
Composite image of a 11×44 LED matrix lapel name tag display using 1608/0603-type SMD LEDs. Top: A little over half of the 21×86 mm display. Center: Close-up of LEDs in ambient light. Bottom: LEDs in their own red light.
SMD capacitors (on the left) with two through-hole capacitors (on the right)

Surface-mount components are usually smaller than their counterparts with leads, and are designed to be handled by machines rather than by humans. The electronics industry has standardized package shapes and sizes (the leading standardisation body is JEDEC).

The codes given in the chart below usually tell the length and width of the components in tenths of millimeters or hundredths of inches. For example, a metric 2520 component is 2.5 mm by 2.0 mm which corresponds roughly to 0.10 inches by 0.08 inches (hence, imperial size is 1008). Exceptions occur for imperial in the two smallest rectangular passive sizes. The metric codes still represent the dimensions in mm, even though the imperial size codes are no longer aligned. Problematically, some manufacturers are developing metric 0201 components with dimensions of 0.25 mm × 0.125 mm (0.0098 in × 0.0049 in),[32] but the imperial 01005 name is already being used for the 0.4 mm × 0.2 mm (0.0157 in × 0.0079 in) package. These increasingly small sizes, especially 0201 and 01005, can sometimes be a challenge from a manufacturability or reliability perspective.[33]

Two-terminal packages

Rectangular passive components

Mostly resistors and capacitors.

More information Package, Approximate dimensions, length × width ...

Tantalum capacitors

More information Package, Dimensions (Length, typ. × width, typ. × height, max.) ...

[39][40]

Aluminum capacitors

More information Package, Dimensions (Length, typ. × width, typ. × height, max.) ...

[41][42][43]

Small-outline diode (SOD)

More information Package, Dimensions (Length, typ. × width, typ. × height, max.) ...

Metal electrode leadless face (MELF)

Mostly resistors and diodes; barrel shaped components, dimensions do not match those of rectangular references for identical codes.[51]

More information Package, Dimensions ...

DO-214

Commonly used for rectifier, Schottky, and other diodes.

More information Package, Dimensions (incl. leads) (Length, typ. × width, typ. × height, max.) ...

Three- and four-terminal packages

Small-outline transistor (SOT)

More information Package, Aliases ...

Other

  • DPAK (TO-252, SOT-428): Discrete Packaging. Developed by Motorola to house higher powered devices. Comes in three[64] or five-terminal[65] versions.
  • D2PAK (TO-263, SOT-404): Bigger than the DPAK; basically a surface mount equivalent of the TO220 through-hole package. Comes in 3, 5, 6, 7, 8 or 9-terminal versions.[66]
  • D3PAK (TO-268): Even larger than D2PAK.[67][68]

Five- and six-terminal packages

Small-outline transistor (SOT)

More information Package, Aliases ...
Various SMD chips, desoldered
MLP package 28-pin chip, upside down to show contacts

Packages with more than six terminals

Dual-in-line

Quad-in-line

  • Plastic leaded chip carrier (PLCC): square, J-lead, pin spacing 1.27 mm
  • Quad flat package (QFP): various sizes, with pins on all four sides
  • Low-profile quad flat-package (LQFP): 1.4 mm high, varying sized and pins on all four sides
  • Plastic quad flat-pack (PQFP), a square with pins on all four sides, 44 or more pins
  • Ceramic quad flat-pack (CQFP): similar to PQFP
  • Metric quad flat-pack (MQFP): a QFP package with metric pin distribution
  • Thin quad flat-pack (TQFP), a thinner version of LQFP
  • Quad flat no-lead (QFN): smaller footprint than leaded equivalent
  • Leadless chip carrier (LCC): contacts are recessed vertically to "wick-in" solder. Common in aviation electronics because of robustness to mechanical vibration.
  • Micro leadframe package (MLP, MLF): with a 0.5 mm contact pitch, no leads (same as QFN)
  • Power quad flat no-lead (PQFN): with exposed die-pads for heatsinking

Grid arrays

  • Ball grid array (BGA): A square or rectangular array of solder balls on one surface, ball spacing typically 1.27 mm (0.050 in)
    • Fine-pitch ball grid array (FBGA): A square or rectangular array of solder balls on one surface
    • Low-profile fine-pitch ball grid array (LFBGA): A square or rectangular array of solder balls on one surface, ball spacing typically 0.8 mm
    • Micro ball grid array (μBGA): Ball spacing less than 1 mm
    • Thin fine-pitch ball grid array (TFBGA): A square or rectangular array of solder balls on one surface, ball spacing typically 0.5 mm
  • Land grid array (LGA): An array of bare lands only. Similar to in appearance to QFN, but mating is by spring pins within a socket rather than solder.
  • Column grid array (CGA): A circuit package in which the input and output points are high-temperature solder cylinders or columns arranged in a grid pattern.
    • Ceramic column grid array (CCGA): A circuit package in which the input and output points are high-temperature solder cylinders or columns arranged in a grid pattern. The body of the component is ceramic.
  • Lead-less package (LLP): A package with metric pin distribution (0.5 mm pitch).

Non-packaged devices

Although surface-mount, these devices require specific process for assembly.

  • Chip-on-board (COB), a bare silicon chip, that is usually an integrated circuit, is supplied without a package (which is usually a lead frame overmolded with epoxy) and is attached, often with epoxy, directly to a circuit board. The chip is then wire bonded and protected from mechanical damage and contamination by an epoxy "glob-top".
  • Chip-on-flex (COF), a variation of COB, where a chip is mounted directly to a flex circuit. Tape-automated bonding process is also a chip-on-flex process as well.
  • Chip-on-glass (COG), a variation of COB, where a chip, typically a liquid crystal display (LCD) controller, is mounted directly on glass.
  • Chip-on-wire (COW), a variation of COB, where a chip, typically a LED or RFID chip, is mounted directly on wire, thus making it a very thin and flexible wire. Such wire may then be covered with cotton, glass or other materials to make into smart textiles or electronic textiles.

There are often subtle variations in package details from manufacturer to manufacturer, and even though standard designations are used, designers need to confirm dimensions when laying out printed circuit boards.

See also


References

  1. "CPU Collection Museum - Chip Package Information". The CPU Shack. Retrieved 15 December 2011.
  2. "Archived copy" (PDF). Archived from the original (PDF) on 15 August 2011. Retrieved 3 February 2011.{{cite web}}: CS1 maint: archived copy as title (link)
  3. "National Semiconductor CERPACK Package Products". National.com. Archived from the original on 18 February 2012. Retrieved 15 December 2011.
  4. "National Semiconductor CQGP Package Products". National.com. Archived from the original on 21 October 2007. Retrieved 15 December 2011.
  5. "National's LLP Package". National.com. Archived from the original on 13 February 2011. Retrieved 15 December 2011.
  6. "LTCC Low Temperature Co-fired Ceramic". Minicaps.com. Retrieved 15 December 2011.
  7. Frye, R.C.; Gabara, T.J.; Tai, K.L.; Fischer, W.C.; Knauer, S.C. (1993). "Performance evaluation of MCM chip-to-chip interconnections using custom I/O buffer designs". Sixth Annual IEEE International ASIC Conference and Exhibit. Ieeexplore.ieee.org. pp. 464–467. doi:10.1109/ASIC.1993.410760. ISBN 978-0-7803-1375-0. S2CID 61288567.
  8. "Press Releases - Motorola Mobility, Inc". Motorola.com. Retrieved 15 December 2011.
  9. "Xilinx new CPLDs with two I/O banks". Eetasia.com. 8 December 2004. Retrieved 15 December 2011.
  10. "Packages". Chelseatech.com. 15 November 2010. Retrieved 15 December 2011.
  11. "Chip-Package SIDEBRAZE DIP". Archived from the original on 20 November 2008. Retrieved 24 October 2009.
  12. "Packaging Terminology". Texas Instruments.
  13. "CSP - Chip Scale Package". Siliconfareast.com. Retrieved 15 December 2011.
  14. "Chip Scale Review Online". Chipscalereview.com. Retrieved 15 December 2011.
  15. "TO-226 Package". Archived from the original on 23 August 2010.
  16. AG, Infineon Technologies. "Packaging - Infineon Technologies". www.infineon.com. Retrieved 15 March 2024.
  17. Package outline maximintegrated.com
  18. "Fairchild's TinyLogic family overview" (PDF). 22 March 2013. Archived from the original (PDF) on 8 January 2015.
  19. Proximity Communication - the Technology, 2004, archived from the original on 18 July 2009
  20. Murata, Tsuneo (5 September 2012). "Murata's world's Smallest Monolithic Ceramic Capacitor - 0201 <millimeter size> size (0.25 mm x 0.125 mm)" (Press release). Kyoto, Japan: Murata Manufacturing Co., Ltd. Archived from the original on 28 December 2015. Retrieved 28 December 2015.
  21. "Thick Film Chip Resistors" (PDF). Datasheet. Panasonic. Archived from the original (PDF) on 9 February 2014.
  22. "Thick Film Chip Resistor - SMDC Series" (PDF). Datasheet. electronic sensor + resistor GmbH. Archived from the original (PDF) on 28 December 2015. Retrieved 28 December 2015.
  23. "SMD/BLOCK Type EMI Suppression Filters EMIFIL" (PDF). Catalog. Murata Manufacturing Co., Ltd. Archived from the original on 28 December 2015. Retrieved 28 December 2015.
  24. "POLYFUSE® Resettable Fuses SMD2920" (PDF). Datasheet. Littelfuse. Retrieved 28 December 2015.
  25. "TLJ Series - Tantalum Solid Electrolytic Chip Capacitors High CV Consumer Series" (PDF). Datasheet. AVX Corporation. Archived (PDF) from the original on 28 December 2015. Retrieved 28 December 2015.
  26. "Tantalum Surface Mount Capacitors - Standard Tantalum" (PDF). Catalog. KEMET Electronics Corporation. 6 September 2011. Archived from the original (PDF) on 26 December 2011. Retrieved 28 December 2015.
  27. "SMT Aluminum Electrolytic Capacitors" (PDF). Datasheet. Panasonic. Archived from the original (PDF) on 1 March 2012. Retrieved 28 December 2015.
  28. "Application Guide - Aluminum SMT Capacitors" (PDF). Resources. Cornell Dubilier. Archived (PDF) from the original on 28 December 2015. Retrieved 28 December 2015.
  29. "SOD 80C Hermetically sealed glass surface-mounted package" (PDF). NXP Semiconductors. Archived (PDF) from the original on 23 April 2012. Retrieved 28 December 2015.
  30. "SOD128 plastic, surface mounted package" (PDF). NXP Semiconductors. 2017. Archived (PDF) from the original on 28 December 2015. Retrieved 28 December 2015.
  31. "SOD323 plastic, surface-mounted package" (PDF). NXP Semiconductors. 2019. Archived (PDF) from the original on 19 November 2012. Retrieved 28 December 2015.
  32. "SOD523 Package outline" (PDF). NXP Semiconductors. 2008. Archived (PDF) from the original on 28 December 2015. Retrieved 28 December 2015.
  33. "Comchip CDSP400-G" (PDF). Datasheet. Comchip Technology Corporation. Archived (PDF) from the original on 28 December 2015. Retrieved 28 December 2015.
  34. "Professional Thin Film MELF Resistors" (PDF). Vishay Intertechnology. 22 April 2014. Archived (PDF) from the original on 28 December 2015. Retrieved 28 December 2015.
  35. "Package Outline Dimensions - U-DFN1616-6 (Type F)" (PDF). Diodes Incorporated. Archived (PDF) from the original on 28 December 2015. Retrieved 28 December 2015.
  36. "Package Outline Drawing - P3.064" (PDF). Intersil. Archived (PDF) from the original on 28 December 2015. Retrieved 28 December 2015.
  37. "3-Lead Small Outline Transistor Package [SOT-89] (RK-3)" (PDF). Analog Devices. 12 September 2013. Archived (PDF) from the original on 28 December 2015. Retrieved 28 December 2015.
  38. "Standards for the Dimensions of Semiconductor Devices" (PDF). Electronic Industries Association of Japan. 15 April 1996. Archived (PDF) from the original on 28 December 2015. Retrieved 28 December 2015.
  39. "Package Information - SOT-89" (PDF). RICOH. Archived (PDF) from the original on 28 December 2015. Retrieved 28 December 2015.
  40. "SOT-233 Molded Package" (PDF). Fairchild Semiconductor. 26 February 2008. Archived (PDF) from the original on 28 December 2015. Retrieved 28 December 2015.
  41. "SOT323 Package outline" (PDF). NXP Semiconductors. 2008. Archived from the original (PDF) on 28 December 2015. Retrieved 28 December 2015.
  42. "SOT416 Package outline" (PDF). NXP Semiconductors. 2010. Archived from the original (PDF) on 28 December 2015. Retrieved 28 December 2015.
  43. "SOT663 Package outline" (PDF). NXP Semiconductors. 2008. Archived (PDF) from the original on 28 December 2015. Retrieved 28 December 2015.
  44. "Mechanical Case Outline SOT-723" (PDF). ON Semiconductor. 10 August 2009. Retrieved 28 December 2015.
  45. "SOT883 Package outline" (PDF). NXP Semiconductors. 2008. Archived (PDF) from the original on 28 December 2015. Retrieved 28 December 2015.
  46. "D-PAK (TO-252AA) Outline Dimensions" (PDF). Vishay Intertechnology. 5 December 2012. Archived from the original (PDF) on 28 December 2015. Retrieved 28 December 2015.
  47. "Mechanical Case Outline - DPAK-5" (PDF). ON Semiconductor. 15 May 2014. Retrieved 28 December 2015.
  48. "D2PAK Outline Dimensions" (PDF). Vishay Intertechnology. 8 July 2015. Archived from the original (PDF) on 28 December 2015. Retrieved 28 December 2015.
  49. "Phase-leg Rectifier Diode" (PDF). IXYS Corporation. 2002. Archived (PDF) from the original on 28 December 2015. Retrieved 28 December 2015.
  50. admin. "D3PAK: Decawatt Package 3 (TO-268, Discrete Package) | MADPCB". Printed Circuit Board Manufacturing, PCB Assembly & PCB Design - MADPCB. Retrieved 8 April 2022.
  51. "P6.064 Package Outline Drawing" (PDF). Intersil. 2010. Archived (PDF) from the original on 28 December 2015. Retrieved 28 December 2015.
  52. "SOT353 Package outline" (PDF). NXP Semiconductors. 2008. Archived from the original (PDF) on 28 December 2015. Retrieved 28 December 2015.
  53. "SOT363 Package outline" (PDF). NXP Semiconductors. 2008. Archived from the original (PDF) on 28 December 2015. Retrieved 28 December 2015.
  54. "SOT563 Package Details" (PDF). Central Semiconductor. 22 May 2015. Archived (PDF) from the original on 28 December 2015. Retrieved 28 December 2015.
  55. "SOT665 Package outline" (PDF). NXP Semiconductors. 2008. Archived from the original (PDF) on 28 December 2015. Retrieved 28 December 2015.
  56. "SOT666 Package outline" (PDF). NXP Semiconductors. 2008. Archived from the original (PDF) on 28 December 2015. Retrieved 28 December 2015.
  57. "SOT963 Package details" (PDF). Central Semiconductor Corp. 2010.
  58. "SOT1115 Package outline" (PDF). NXP Semiconductors. 2010. Archived from the original (PDF) on 28 December 2015. Retrieved 28 December 2015.
  59. "SOT1202 Package outline" (PDF). NXP Semiconductors. 2010. Archived from the original (PDF) on 28 December 2015. Retrieved 28 December 2015.
  60. "IC Package Types". www.SiliconFarEast.com. Archived from the original on 26 July 2013. Retrieved 28 December 2015.

Share this article:

This article uses material from the Wikipedia article IC_package, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.