IP67

IP code

IP code

Standard for protection against intrusion of dust and water


The IP code or ingress protection code indicates how well a device is protected against water and dust. It is defined by the International Electrotechnical Commission (IEC) under the international standard IEC 60529 which classifies and provides a guideline to the degree of protection provided by mechanical casings and electrical enclosures against intrusion, dust, accidental contact, and water. It is published in the European Union by the European Committee for Electrotechnical Standardization (CENELEC) as EN 60529.

IP65 touchscreen display
IP65 LED lamp

The standard aims to provide users more detailed information than vague marketing terms such as waterproof. For example, a cellular phone rated at IP67 is "dust resistant" and can be "immersed in 1 meter of freshwater for up to 30 minutes". Similarly, an electrical socket rated IP22 is protected against insertion of fingers and will not become unsafe during a specified test in which it is exposed to vertically or nearly vertically dripping water. IP22 or IP2X are typical minimum requirements for the design of electrical accessories for indoor use.

The digits indicate conformity with the conditions summarized in the tables below. The digit 0 is used where no protection is provided. The digit is replaced with the letter X when insufficient data has been gathered to assign a protection level. The device can become less capable; however, it cannot become unsafe.

There are no hyphens in a standard IP code. IPX-8 (for example) is thus an invalid IP code.[1]

Origin of the letters IP

In the original IEC 60529 standard from year 1976, the letters IP are used without providing an explanation, and referred as "characteristic letters".[2] In the next editions of the standard, from years 1989 and 1999 respectively, the IP is explained to denote "international protection" on both French and English pages. According to the Finnish national committee of the IEC, one possibility is that the abbreviation is a combination of English word ingress and French word pénétration which stands for ingress, but finding the correct answer would require doing a historical study on the 1970's standardization, which is difficult because the experts preparing the original standards are probably retired or deceased.[3]

Code breakdown

This table shows what each digit or part of the IP code represents.[4]

IP codes
More information Code letters, First ...

First digit: Solid particle protection

The first digit indicates the level of protection the enclosure provides against access to hazardous parts (e.g., electrical conductors, moving parts) and the ingress of solid foreign objects.[5]

More information Level sized, Effective against ...

Second digit: Liquid ingress protection

The second digit indicates the level of protection that the enclosure provides against harmful ingress of water.[1]

The ratings for water ingress are not cumulative beyond IPX6. A device compliant with IPX7 (covering water immersion) is not necessarily compliant with IPX5 or IPX6 (covering exposure to water jets). A device that meets both tests is indicated by listing both tests separated by a slash, e.g. IPX5/IPX7.

More information Level, Protection against ...

(All tests with the letter "K" are defined by ISO 20653 (replacing DIN 40050-9) and are not found in IEC 60529, except for IPx9, which is the same as the IP69K water test.)

Supplementary letter (optional)

For the protection of equipment specific to:

More information Letter, Meaning ...

The letter K is specified in ISO 20653 (replacing DIN 40050-9) and not in IEC 60529.

IPx9K and IPx9

DIN 40050-9 extended the newer IEC 60529 rating system with an IP69K rating for high-pressure, high-temperature wash-down applications.[7] Enclosures conforming with ISO 20653:2013 must be both dust-tight (IP6X) and able to withstand high-pressure and steam cleaning.

The IPx9K standard was originally developed for road vehicles—especially those that need regular intensive cleaning (dump trucks, concrete mixers, etc.)—but it also finds use in other areas, such as food processing machinery and car wash systems. It was superseded by ISO 20653:2013 Road Vehicles-Degrees of protection (IP code),[8] and complemented by the addition of a level 9 water ingress testing to IEC 60529, which includes essentially the same spray test as IPx9K, but also includes, in Figure 10 of the standard, a drawing for a test fixture designed to verify the correct water pressure.

Test setup

The test specifies a spray nozzle that is fed with 80 °C (176 °F) water at 8–10 MPa (80–100 bar; 1,200–1,500 psi) and a flow rate of 14–16 litres per minute (3.7–4.2 US gal/min). The nozzle is held 10–15 cm from the tested device at angles of 0°, 30°, 60° and 90° for 30 seconds each. The test device sits on a turntable that completes a rotation once every 12 seconds (5 rpm). The IPx9 specification details a freehand method for testing larger specimens that will not fit on a turntable (see table above). The free hand method also requires (at least) one additional minute of spray time (1 min/m2, 3 min. minimum). The test distance also increases to .175 m (0.15–0.2 m per section 14.2.9).

United States (NEMA rating)

In the U.S., the National Electrical Manufacturers Association defines NEMA enclosure types in NEMA standard number 250. The following table outlines which IEC 60529 IP code each respective NEMA guideline meets. Ratings between the two standards are not directly equivalent: NEMA ratings also require additional product features and tests (such as functionality under icing conditions, enclosures for hazardous areas, knock-outs for cable connections and others) not addressed by IP ratings.

More information NEMA enclosure ...

See also


References

  1. Ingress Protection: The System of Tests and Meaning of Codes, archived from the original on 22 May 2013.
  2. IEC Publication 529: Classification des degrés de protection procurés par les enveloppes – Classification of degrees of protection provided by enclosures (1st ed.). International Electrotechnical Commission. 1976.
  3. "SESKO: Frequently asked questions (in Finnish)". sesko.fi. Retrieved 22 August 2023.
  4. Source IEx. "Degrees of Protection" (PDF).
  5. International Electrotechnical Commission (2013). IEC 60529 - Degrees of protection provided by enclosures (IP Code). International standard (2.2 ed.). p. 21. ISBN 9782832210864. OCLC 864643678.
  6. DIN 40050-9: Straßenfahrzeuge; IP-Schutzarten; Schutz gegen Fremdkörper, Wasser und Berühren; Elektrische Ausrüstung [Road vehicles; degrees of protection (IP-code); protection against foreign objects, water and impact; electrical equipment], May 1993. An English translation of the German original is available from DIN.
  7. ISO 20653:2013 Road Vehicles-Degrees of protection (IP code) Protection of electrical equipment against foreign objects, water and access
  8. "NEMA Enclosure Types" (PDF). National Electrical Manufacturers Association. November 2005. pp. 7–9. Archived from the original (PDF) on 10 June 2018. Retrieved 10 January 2017.

Share this article:

This article uses material from the Wikipedia article IP67, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.