Inverse_Pythagorean_theorem

Inverse Pythagorean theorem

Inverse Pythagorean theorem

Relation between the side lengths and altitude of a right triangle


In geometry, the inverse Pythagorean theorem (also known as the reciprocal Pythagorean theorem[1] or the upside down Pythagorean theorem[2]) is as follows:[3]

Let A, B be the endpoints of the hypotenuse of a right triangle ABC. Let D be the foot of a perpendicular dropped from C, the vertex of the right angle, to the hypotenuse. Then
Comparison of the inverse Pythagorean theorem with the Pythagorean theorem using the smallest positive integer inverse-Pythagorean triple in the table below.
More information BasePytha-gorean triple, AC ...

This theorem should not be confused with proposition 48 in book 1 of Euclid's Elements, the converse of the Pythagorean theorem, which states that if the square on one side of a triangle is equal to the sum of the squares on the other two sides then the other two sides contain a right angle.

Proof

The area of triangle ABC can be expressed in terms of either AC and BC, or AB and CD:

given CD > 0, AC > 0 and BC > 0.

Using the Pythagorean theorem,

as above.

Note in particular:

Special case of the cruciform curve

The cruciform curve or cross curve is a quartic plane curve given by the equation

where the two parameters determining the shape of the curve, a and b are each CD.

Substituting x with AC and y with BC gives

Inverse-Pythagorean triples can be generated using integer parameters t and u as follows.[4]

Application

If two identical lamps are placed at A and B, the theorem and the inverse-square law imply that the light intensity at C is the same as when a single lamp is placed at D.

See also


References

  1. R. B. Nelsen, Proof Without Words: A Reciprocal Pythagorean Theorem, Mathematics Magazine, 82, December 2009, p. 370
  2. The upside-down Pythagorean theorem, Jennifer Richinick, The Mathematical Gazette, Vol. 92, No. 524 (July 2008), pp. 313-316
  3. Johan Wästlund, "Summing inverse squares by euclidean geometry", http://www.math.chalmers.se/~wastlund/Cosmic.pdf, pp. 4–5.
  4. "Diophantine equation of three variables".



Share this article:

This article uses material from the Wikipedia article Inverse_Pythagorean_theorem, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.