Join and meet

In mathematics, specifically order theory, the join of a subset of a partially ordered set is the supremum (least upper bound) of denoted and similarly, the meet of is the infimum (greatest lower bound), denoted In general, the join and meet of a subset of a partially ordered set need not exist. Join and meet are dual to one another with respect to order inversion.

This Hasse diagram depicts a partially ordered set with four elements: a, b, the maximal element a b equal to the join of a and b, and the minimal element a b equal to the meet of a and b. The join/meet of a maximal/minimal element and another element is the maximal/minimal element and conversely the meet/join of a maximal/minimal element with another element is the other element. Thus every pair in this poset has both a meet and a join and the poset can be classified as a lattice.

A partially ordered set in which all pairs have a join is a join-semilattice. Dually, a partially ordered set in which all pairs have a meet is a meet-semilattice. A partially ordered set that is both a join-semilattice and a meet-semilattice is a lattice. A lattice in which every subset, not just every pair, possesses a meet and a join is a complete lattice. It is also possible to define a partial lattice, in which not all pairs have a meet or join but the operations (when defined) satisfy certain axioms.[1]

The join/meet of a subset of a totally ordered set is simply its maximal/minimal element, if such an element exists.

If a subset of a partially ordered set is also an (upward) directed set, then its join (if it exists) is called a directed join or directed supremum. Dually, if is a downward directed set, then its meet (if it exists) is a directed meet or directed infimum.


Share this article:

This article uses material from the Wikipedia article Join and meet, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.