Kepler-223d

Kepler-223

Kepler-223

G5V star in the constellation Cygnus


Kepler-223 (KOI-730, KIC 10227020) is a G5V star with an extrasolar planetary system discovered by the Kepler mission. Studies indicate that the Kepler-223 star system consists of 4 planets orbiting the star.[5][3]

Quick Facts Observation data Epoch J2000.0 Equinox J2000.0, Constellation ...
Kepler-223 6:4:4:3
Kepler-223 8:6:4:3

Planetary system

More information Companion (in order from star), Mass ...

The confirmed planetary system was first detected by the Kepler mission, and contains four planets.[6] This system was initially believed to contain two co-orbital planets orbiting the star at approximately the same orbital distance every 9.8 days, with one permanently locked 60° behind the other in one of the two Trojan Lagrangian points.[7] The two co-orbital planets were thought to be locked in mean motion resonances with the other two planets, creating an overall 6:4:4:3 resonance.[8] This would have been the first known example of co-orbital planets.

However, follow-up study of the system revealed that an alternative configuration, with the four planets having orbital periods in the ratio 8:6:4:3 is better supported by the data. This configuration does not contain co-orbital planets,[9] and has been confirmed by further observations.[3] It represents the first confirmed 4-body orbital resonance.[6]

The radii are 3.0, 3.4, 5.2, and 4.6 Earth radii, and the orbital periods are 7.3845, 9.8456, 14.7887 and 19.7257 days, respectively.[3]

See also


References

  1. Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
  2. "KIC10 Search". Multimission Archive at STScI. 8 October 2009. Retrieved 5 March 2011.
  3. Mills, S. M.; Fabrycky, D. C.; Migaszewski, C.; Ford, E. B.; Petigura, E.; Isaacson, H. (11 May 2016). "A resonant chain of four transiting, sub-Neptune planets". Nature. 533 (7604): 509–512. arXiv:1612.07376. Bibcode:2016Natur.533..509M. doi:10.1038/nature17445. PMID 27225123. S2CID 205248546.
  4. Borucki, William J.; Koch, David G.; Basri, Gibor; Batalha, Natalie; Brown, Timothy M.; Bryson, Stephen T.; Caldwell, Douglas; Christensen-Dalsgaard, Jørgen; Cochran, William D.; Devore, Edna; Dunham, Edward W.; Gautier, Thomas N.; Geary, John C.; Gilliland, Ronald; Gould, Alan; Howell, Steve B.; Jenkins, Jon M.; Latham, David W.; Lissauer, Jack J.; Marcy, Geoffrey W.; Rowe, Jason; Sasselov, Dimitar; Boss, Alan; Charbonneau, David; Ciardi, David; Doyle, Laurance; Dupree, Andrea K.; Ford, Eric B.; Fortney, Jonathan; et al. (2011). "Characteristics of planetary candidates observed by Kepler, II: Analysis of the first four months of data". The Astrophysical Journal. 736 (1): 19. arXiv:1102.0541. Bibcode:2011ApJ...736...19B. doi:10.1088/0004-637X/736/1/19. S2CID 15233153.
  5. Koppes, S. (17 May 2016). "Kepler-223 System: Clues to Planetary Migration". Jet Propulsion Lab. Retrieved 18 May 2016.
  6. Chown, Marcus (28 February 2011). "Two planets found sharing one orbit". New Scientist.
  7. Emspak, Jesse (2 March 2011). "Kepler Finds Bizarre Systems". International Business Times. International Business Times Inc.
  8. Beatty, Kelly (5 March 2011). "Kepler Finds Planets in Tight Dance". Sky and Telescope.

Share this article:

This article uses material from the Wikipedia article Kepler-223d, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.