Liouville's theorem (Hamiltonian)

In physics, Liouville's theorem, named after the French mathematician Joseph Liouville, is a key theorem in classical statistical and Hamiltonian mechanics. It asserts that the phase-space distribution function is constant along the trajectories of the system—that is that the density of system points in the vicinity of a given system point traveling through phase-space is constant with time. This time-independent density is in statistical mechanics known as the classical a priori probability.[1]

There are related mathematical results in symplectic topology and ergodic theory; systems obeying Liouville's theorem are examples of incompressible dynamical systems.

There are extensions of Liouville's theorem to stochastic systems.[2]


Share this article:

This article uses material from the Wikipedia article Liouville's theorem (Hamiltonian), and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.