List of the most distant astronomical objects

This article documents the most distant astronomical objects discovered and verified so far, and the time periods in which they were so classified.

Distances to remote objects, other than those in nearby galaxies, are nearly always inferred by measuring the cosmological redshift of their light. By their nature, very distant objects tend to be very faint, and these distance determinations are difficult and subject to errors. An important distinction is whether the distance is determined via spectroscopy or using a photometric redshift technique. The former is generally both more precise and also more reliable, in the sense that photometric redshifts are more prone to being wrong due to confusion with lower redshift sources that have unusual spectra. For that reason, a spectroscopic redshift is conventionally regarded as being necessary for an object's distance to be considered definitely known, whereas photometrically determined redshifts identify "candidate" very distant sources. Here, this distinction is indicated by a "p" subscript for photometric redshifts.

Notably distant objects

1 Gly (gigalight-year) = 1 billion light-years.

Most distant astronomical objects with spectroscopic redshift determinations
Name Redshift
Light travel distance§
Type Notes
GN-z11 z = 11.09 13.39 Galaxy Confirmed galaxy[2]
MACS1149-JD1 z = 9.11 13.26 Galaxy Confirmed galaxy[3]
EGSY8p7 z = 8.68 13.23 Galaxy Confirmed galaxy[4]
A2744 YD4 z = 8.38 13.20 Galaxy Confirmed galaxy[5]
MACS0416 Y1 z = 8.31 13.20 Galaxy Confirmed galaxy[6]
GRB 090423 z = 8.2 13.18 Gamma-ray burst [7][8]
EGS-zs8-1 z = 7.73 13.13 Galaxy Confirmed galaxy[9]
z7 GSD 3811 z = 7.66 13.11 Galaxy Galaxy[10]
J0313-1806 z = 7.64 Quasar [11][12]
z8 GND 5296 z = 7.51 13.10 Galaxy Confirmed galaxy[13][14]
A1689-zD1 z = 7.5 13.10 Galaxy Galaxy[15]
GS2_1406 z = 7.452 13.095 Galaxy Galaxy[16]
SXDF-NB1006-2 z = 7.215 13.07 Galaxy Galaxy[17][18]
GN-108036 z = 7.213 13.07 Galaxy Galaxy[18][19]
BDF-3299 z = 7.109 13.05 Galaxy [20]
ULAS J1120+0641 z = 7.085 13.05 Quasar [21]
A1703 zD6 z = 7.045 13.04 Galaxy [18]
BDF-521 z = 7.008 13.04 Galaxy [20]
G2-1408 z = 6.972 13.03 Galaxy [18][22]
IOK-1 z = 6.964 13.03 Galaxy [18][23] Lyman-alpha emitter[24]
LAE J095950.99+021219.1 z = 6.944 13.03 Galaxy Lyman-alpha emitter — Faint galaxy[25]
PSO J172.3556+18.7734 z = 6.82 Quasar Currently the most distant known radio-loud quasar. [26]

§ The tabulated distance is the light travel distance, which has no direct physical significance. See discussion at distance measures and Observable Universe

As of 2012, there were about 50 possible objects z = 8 or farther, and another 100 candidates at z = 7, based on photometric redshift estimates released by the Hubble eXtreme Deep Field (XDF) project from observations made between mid-2002 and December 2012.[27] Not everything is included here.[27]

Notable candidates for most distant astronomical objects, based on photometric redshift estimates
Name Redshift
Light travel distance§
Type Notes
UDFj-39546284 zp≅11.9? 13.37 Protogalaxy This is a candidate protogalaxy,[28][29][30][31] although recent analyses have suggested it is likely to be a lower redshift source.[32][33]
MACS0647-JD zp≅10.7 13.3 Galaxy Candidate most distant galaxy, which benefits by being magnified by the gravitational lensing effect of an intervening cluster of galaxies.[34][35]
SPT0615-JD z = 9.9 13.27 Galaxy [36]
A2744-JD zp≅9.8 13.2 Galaxy Galaxy is being magnified and lensed into three multiple images, geometrically supporting its redshift. Faintest known galaxy at z~10.[37][38]
MACS1149-JD1 zp≅9.6 13.2[39] Candidate galaxy or protogalaxy [40]
GRB 090429B zp≅9.4 13.14[41] Gamma-ray burst [42] The photometric redshift in this instance has quite large uncertainty, with the lower limit for the redshift being z>7.
UDFy-33436598 zp≅8.6 13.1 Candidate galaxy or protogalaxy [43]
UDFy-38135539 zp≅8.6 13.1 Candidate galaxy or protogalaxy A spectroscopic redshift of z = 8.55 was claimed for this source in 2010,[44] but has subsequently been shown to be mistaken.[45]
BoRG-58 zp≅8 13 Cluster or protocluster Protocluster candidate[46]

§ The tabulated distance is the light travel distance, which has no direct physical significance. See discussion at distance measures and Observable Universe

List of most distant objects by type

Most distant object by type
Type Object Redshift Notes
Any astronomical object, no matter what type GN-z11 z = 11.09 With an estimated light-travel distance of about 13.4 billion light-years (and a proper distance of approximately 32 billion light-years (9.8 billion parsecs) from Earth due to the Universe's expansion since the light we now observe left it about 13.4 billion years ago), astronomers announced it as the most distant astronomical galaxy known, as of March 2016.[47][note 1]
Galaxy or protogalaxy
Galaxy cluster CL J1001+0220 z≅2.506 As of 2016[48]
Galaxy supercluster Coma Supercluster
Quasar J0313-1806 z = 7.54 [49]
Black hole [49]
Star or protostar or post-stellar corpse
(detected by an event)
Progenitor of GRB 090423 z = 8.2 [7][8] Note, GRB 090429B has a photometric redshift zp≅9.4,[50] and so is most likely more distant than GRB 090423, but is lacking spectroscopic confirmation. Estimated an approximate distance of 13 billion lightyears from Earth
Star or protostar or post-stellar corpse
(detected as a star)
SDSS J1229+1122 55 Mly (17 Mpc) The blue supergiant is illuminating a nebula in the tidal tail of galaxy IC 3418.[51]

This record is superseded by a star at redshift z=1.5 (4.4 Gpc) that is being lensed by the galaxy cluster MACS J1149.5+2223.[52]

Star MACS J1149 Lensed Star 1 (or Icarus) z = 1.49
9.0 Gly
Most distant individual (actually, blue supergiant) star detected (April, 2018)[53][54][55][56]
Star cluster
System of star clusters Globular cluster system in elliptical galaxy behind NGC 6397 1.2 Gly [57][58][59][60][61]
X-ray jet PJ352–15 quasar jet z = 5.831
12.7 Gly[62]
The previous recordholder was at 12.4Gly.[63][64]
Microquasar XMMU J004243.6+412519 2.5 Mly First extragalactic microquasar discovered[65][66][67]
Planet SWEEPS-11 / SWEEPS-04 27,710 ly [68]
  • An analysis of the lightcurve of the microlensing event PA-99-N2 suggests the presence of a planet orbiting a star in the Andromeda Galaxy.[69]
  • A controversial microlensing event of lobe A of the double gravitationally lensed Q0957+561 suggests that there is a planet in the lensing galaxy lying at redshift 0.355 (3.7 Gly).[70][71]
Most distant event by type
Type Event Redshift Notes
Gamma-ray burst GRB 090423 z = 8.2 [7][8] Note, GRB 090429B has a photometric redshift zp≅9.4,[50] and so is most likely more distant than GRB 090423, but is lacking spectroscopic confirmation.
Core collapse supernova SN 1000+0216 z = 3.8993 [72]
Type Ia supernova SN UDS10Wil z = 1.914 [73]
Type Ia supernova SN SCP-0401
z = 1.71 First observed in 2004, it was not until 2013 that it could be identified as a Type-Ia SN.[74][75]
Cosmic Decoupling Cosmic Background Radiation creation z~1000 to 1089 [76][77]

Timeline of most distant astronomical object recordholders

Objects in this list were found to be the most distant object at the time of determination of their distance. This is frequently not the same as the date of their discovery.

Distances to astronomical objects may be determined through parallax measurements, use of standard references such as cepheid variables or Type Ia supernovas, or redshift measurement. Spectroscopic redshift measurement is preferred, while photometric redshift measurement is also used to identify candidate high redshift sources. The symbol z represents redshift.

Most Distant Object Titleholders (not including candidates based on photometric redshifts)
Object Type Date Distance
(z = Redshift)
GN-z11 Galaxy 2016–Present z = 11.09 [78]
EGSY8p7 Galaxy 2015  2016 z = 8.68 [78][79][80][81]
Progenitor of GRB 090423 / Remnant of GRB 090423 Gamma-ray burst progenitor / Gamma-ray burst remnant 2009  2015 z = 8.2 [8][82]
IOK-1 Galaxy 2006  2009 z = 6.96 [82][83][84][85]
SDF J132522.3+273520 Galaxy 2005  2006 z = 6.597 [85][86]
SDF J132418.3+271455 Galaxy 2003  2005 z = 6.578 [86][87][88][89]
HCM-6A Galaxy 2002  2003 z = 6.56 The galaxy is lensed by galaxy cluster Abell 370. This was the first non-quasar galaxy found to exceed redshift 6. It exceeded the redshift of quasar SDSSp J103027.10+052455.0 of z = 6.28[87][88][90][91][92][93]
SDSS J1030+0524
(SDSSp J103027.10+052455.0)
Quasar 2001  2002 z = 6.28 [94][95][96][97][98][99]
SDSS 1044-0125
(SDSSp J104433.04-012502.2)
Quasar 2000  2001 z = 5.82 [100][101][98][99][102][103][104]
SSA22-HCM1 Galaxy 1999  2000 z>=5.74 [105][106]
HDF 4-473.0 Galaxy 1998  1999 z = 5.60 [106]
RD1 (0140+326 RD1) Galaxy 1998 z = 5.34 [107][108][109][106][110]
CL 1358+62 G1 & CL 1358+62 G2 Galaxies 1997  1998 z = 4.92 These were the most remote objects discovered at the time. The pair of galaxies were found lensed by galaxy cluster CL1358+62 (z = 0.33). This was the first time since 1964 that something other than a quasar held the record for being the most distant object in the universe.[108][111][112][109][106][113]
PC 1247-3406 Quasar 1991  1997 z = 4.897 [100][114][115][116][117]
PC 1158+4635 Quasar 1989  1991 z = 4.73 [100][117][118][119][120][121]
Q0051-279 Quasar 1987  1989 z = 4.43 [122][118][121][123][124][125]
(QSO B0000-26)
Quasar 1987 z = 4.11 [122][118][126]
PC 0910+5625
(QSO B0910+5625)
Quasar 1987 z = 4.04 This was the second quasar discovered with a redshift over 4.[100][118][127][128]
(QSO J0048-2903)
Quasar 1987 z = 4.01 [122][118][127][129][130]
(QSO B1208+1011)
Quasar 1986  1987 z = 3.80 This is a gravitationally-lensed double-image quasar, and at the time of discovery to 1991, had the least angular separation between images, 0.45 ″.[127][131][132]
PKS 2000-330
(QSO J2003-3251, Q2000-330)
Quasar 1982  1986 z = 3.78 [127][133][134]
(QSO B1442+101)
Quasar 1974  1982 z = 3.53 [135][136][137]
(QSO B0642+449)
Quasar 1973  1974 z = 3.408 Nickname was "the blaze marking the edge of the universe".[135][137][138][139][140]
4C 05.34 Quasar 1970  1973 z = 2.877 Its redshift was so much greater than the previous record that it was believed to be erroneous, or spurious.[137][141][142][143]
5C 02.56
(7C 105517.75+495540.95)
Quasar 1968  1970 z = 2.399 [113][143][144]
4C 25.05
(4C 25.5)
Quasar 1968 z = 2.358 [113][143][145]
PKS 0237-23
(QSO B0237-2321)
Quasar 1967  1968 z = 2.225 [141][145][146][147][148]
4C 12.39
(Q1116+12, PKS 1116+12)
Quasar 1966  1967 z = 2.1291 [113][148][149][150]
4C 01.02
(Q0106+01, PKS 0106+1)
Quasar 1965  1966 z = 2.0990 [113][148][149][151]
3C 9 Quasar 1965 z = 2.018 [148][152][153][154][155][156]
3C 147 Quasar 1964  1965 z = 0.545 [157][158][159][160]
3C 295 Radio galaxy 1960  1964 z = 0.461 [106][113][161][162][163]
LEDA 25177 (MCG+01-23-008) Brightest cluster galaxy 1951  1960 z = 0.2
(V = 61000 km/s)
This galaxy lies in the Hydra Supercluster. It is located at B1950.0 08h 55m 4s +03° 21 and is the BCG of the fainter Hydra Cluster Cl 0855+0321 (ACO 732).[106][163][164][165][166][167][168]
LEDA 51975 (MCG+05-34-069) Brightest cluster galaxy 1936 – z = 0.13
(V = 39000 km/s)
The brightest cluster galaxy of the Bootes Cluster (ACO 1930), an elliptical galaxy at B1950.0 14h 30m 6s +31° 46 apparent magnitude 17.8, was found by Milton L. Humason in 1936 to have a 40,000 km/s recessional redshift velocity.[167][169][170]
LEDA 20221 (MCG+06-16-021) Brightest cluster galaxy 1932 – z = 0.075
(V = 23000 km/s)
This is the BCG of the Gemini Cluster (ACO 568) and was located at B1950.0 07h 05m 0s +35° 04[169][171]
BCG of WMH Christie's Leo Cluster Brightest cluster galaxy 1931  1932 z =
(V = 19700 km/s)
BCG of Baede's Ursa Major Cluster Brightest cluster galaxy 1930  1931 z =
(V = 11700 km/s)
NGC 4860 Galaxy 1929  1930 z = 0.026
(V = 7800 km/s)
NGC 7619 Galaxy 1929 z = 0.012
(V = 3779 km/s)
Using redshift measurements, NGC 7619 was the highest at the time of measurement. At the time of announcement, it was not yet accepted as a general guide to distance, however, later in the year, Edwin Hubble described redshift in relation to distance, which became accepted widely as an inferred distance.[176][178][179]
NGC 584
(Dreyer nebula 584)
Galaxy 1921  1929 z = 0.006
(V = 1800 km/s)
At the time, nebula had yet to be accepted as independent galaxies. However, in 1923, galaxies were generally recognized as external to the Milky Way.[167][176][178][180][181][182][183]
M104 (NGC 4594) Galaxy 1913  1921 z = 0.004
(V = 1180 km/s)
This was the second galaxy whose redshift was determined; the first being Andromeda – which is approaching us and thus cannot have its redshift used to infer distance. Both were measured by Vesto Melvin Slipher. At this time, nebula had yet to be accepted as independent galaxies. NGC 4594 was measured originally as 1000 km/s, then refined to 1100, and then to 1180 in 1916.[176][180][183]
(Alpha Bootis)
Star 1891  1910 160 ly
(18 mas)
(this is very inaccurate, true=37 ly)
This number is wrong; originally announced in 1891, the figure was corrected in 1910 to 40 ly (60 mas). From 1891 to 1910, it had been thought this was the star with the smallest known parallax, hence the most distant star whose distance was known. Prior to 1891, Arcturus had previously been recorded of having a parallax of 127 mas.[184][185][186][187]
(Alpha Aurigae)
Star 1849 -  72 ly
(46 mas)
(Alpha Ursae Minoris)
Star 1847 - 1849 50 ly
(80 mas)
(this is very inaccurate, true=~375 ly)
(Alpha Lyrae)
Star (part of a double star pair) 1839 - 1847 7.77 pc
(125 mas)
61 Cygni Binary star 1838  1839 3.48 pc
(313.6 mas)
This was the first star other than the Sun to have its distance measured.[191][193][194]
Uranus Planet of the Solar System 1781  1838 18 AU This was the last planet discovered before the first successful measurement of stellar parallax. It had been determined that the stars were much farther away than the planets.
Saturn Planet of the Solar System 1619  1781 10 AU From Kepler's Third Law, it was finally determined that Saturn is indeed the outermost of the classical planets, and its distance derived. It had only previously been conjectured to be the outermost, due to it having the longest orbital period, and slowest orbital motion. It had been determined that the stars were much farther away than the planets.
Mars Planet of the Solar System 1609  1619 2.6 AU when Mars is diametrically opposed to Earth Kepler correctly characterized Mars and Earth's orbits in the publication Astronomia nova. It had been conjectured that the fixed stars were much farther away than the planets.
Sun Star 3rd century BC — 1609 380 Earth radii (very inaccurate, true=16000 Earth radii) Aristarchus of Samos made a measurement of the distance of the Sun from the Earth in relation to the distance of the Moon from the Earth. The distance to the Moon was described in Earth radii (20, also inaccurate). The diameter of the Earth had been calculated previously. At the time, it was assumed that some of the planets were further away, but their distances could not be measured. The order of the planets was conjecture until Kepler determined the distances from the Sun of the five known planets that were not Earth. It had been conjectured that the fixed stars were much farther away than the planets.
Moon Moon of a planet 3rd century BC 20 Earth radii (very inaccurate, true=64 Earth radii) Aristarchus of Samos made a measurement of the distance between the Earth and the Moon. The diameter of the Earth had been calculated previously.

  • z represents redshift, a measure of recessional velocity and inferred distance due to cosmological expansion
  • mas represents parallax, a measure of angle and distance can be determined through trigonometry

List of objects by year of discovery that turned out to be most distant

This list contains a list of most distant objects by year of discovery of the object, not the determination of its distance. Objects may have been discovered without distance determination, and were found subsequently to be the most distant known at that time. However, object must have been named or described. An object like OJ 287 is ignored even though it was detected as early as 1891 using photographic plates, but ignored until the advent of radiotelescopes.

Year of recordModern
light travel distance (Mly)
ObjectTypeDetected usingFirst record by (1)
9642.5[195]Andromeda GalaxySpiral galaxynaked eyeAbd al-Rahman al-Sufi[196]
16543Triangulum GalaxySpiral galaxyrefracting telescopeGiovanni Battista Hodierna[197]
177968[198]Messier 58Barred spiral galaxyrefracting telescopeCharles Messier[199]
178576.4[200]NGC 584GalaxyWilliam Herschel
1880s206 ± 29[201]NGC 1Spiral galaxyDreyer, Herschel
19592,400[202]3C 273QuasarParkes Radio TelescopeMaarten Schmidt, Bev Oke[203]
19605,000[204]3C 295Radio galaxyPalomar ObservatoryRudolph Minkowski
Data missing from table
200913,000[205]GRB 090423Gamma-ray burst progenitorSwift Gamma-Ray Burst MissionKrimm, H. et al.[206]

See also


  1. At first glance, the distance of 32 billion light-years (9.8 billion parsecs) might seem impossibly far away in a Universe that is only 13.8 billion (short scale) years old, where a light year is the distance light travels in a year, and where nothing can travel faster than the speed of light. However, because of the expansion of the universe, the distance from GN-z11 to Earth has expanded during the 13.4 billion years it took the light to reach us. At the time the light was emitted this proper distance would have been only 2.6 billion light-years, measured today the expanded distance is 32 billion light-years. See: Size of the observable universe, Misconceptions about the size of the Observable universe, and Measuring distances in expanding space.


  1. Light travel distance was calculated from redshift value using cosmological calculator, with parameters values as of 2015: H0=67.74 and OmegaM=0.3089 (see table in Lambda-CDM model article).
  2. P. A. Oesch, G. Brammer, P. G. van Dokkum, G. D. Illingworth, R. J. Bouwens, I. Labbe, M. Franx, I. Momcheva, M. L. N. Ashby, G. G. Fazio, V. Gonzalez, B. Holden, D. Magee, R. E. Skelton, R. Smit, L. R. Spitler, M. Trenti, S. P. Willner (2016). "A Remarkably Luminous Galaxy at z = 11.1 Measured with Hubble Space Telescope Grism Spectroscopy". The Astrophysical Journal. 819 (2): 129. arXiv:1603.00461. Bibcode:2016ApJ...819..129O. doi:10.3847/0004-637X/819/2/129. S2CID 119262750.CS1 maint: uses authors parameter (link)
  3. T. Hashimoto, N. Laporte, K. Mawatari, R. S. Ellis, A. K. Inoue, E. Zackrisson, G. Roberts-Borsani, W. Zheng, Y. Tamura, F. E. Bauer, T. Fletcher, Y. Harikane, B. Hatsukade, N. H. Hayatsu, Y. Matsuda, H. Matsuo, T. Okamoto, M. Ouchi, R. Pello, C. Rydberg, I. Shimizu, Y. Taniguchi, H. Umehata, N. Yoshida (2019). "The Onset of Star Formation 250 Million Years After the Big Bang". Nature. 557 (7705): 312–313. arXiv:1805.05966. Bibcode:2018Natur.557..392H. doi:10.1038/s41586-018-0117-z. PMID 29765123. S2CID 21702406.CS1 maint: uses authors parameter (link)
  4. Adi Zitrin, Ivo Labbe, Sirio Belli, Rychard Bouwens, Richard S. Ellis, Guido Roberts-Borsani, Daniel P. Stark, Pascal A. Oesch, Renske Smit (2015). "Lyman-alpha Emission from a Luminous z = 8.68 Galaxy: Implications for Galaxies as Tracers of Cosmic Reionization". The Astrophysical Journal. 810 (1): L12. arXiv:1507.02679. Bibcode:2015ApJ...810L..12Z. doi:10.1088/2041-8205/810/1/L12. S2CID 11524667.CS1 maint: uses authors parameter (link)
  5. Laporte, N.; Ellis, R. S.; Boone, F.; Bauer, F. E.; Quénard, D.; Roberts-Borsani, G. W.; Pelló, R.; Pérez-Fournon, I.; Streblyanska, A. (2017). "Dust in the Reionization Era: ALMA Observations of a z = 8.38 Gravitationally Lensed Galaxy". The Astrophysical Journal. 832 (2): L21. arXiv:1703.02039. Bibcode:2017ApJ...837L..21L. doi:10.3847/2041-8213/aa62aa. S2CID 51841290.CS1 maint: uses authors parameter (link)
  6. Tamura, Y.; Mawatari, K.; Hashimoto, T.; Inoue, A. K.; Zackrisson, E.; Christensen, L.; Binggeli, C; Matsuda, Y.; Matsuo, H.; Takeuchi, T. T.; Asano, R. S.; Sunaga, K.; Shimizu, I.; Okamoto, T.; Yoshida, N.; Lee, M.; Shibuya, T,; Taniguchi, Y.; Umehata, H.; Hatsukade, B.; Kohno, K.; Ota, K. (2017). "Detection of the Far-infrared [O III] and Dust Emission in a Galaxy at Redshift 8.312: Early Metal Enrichment in the Heart of the Reionization Era". The Astrophysical Journal. 874 (1): 27. arXiv:1806.04132. Bibcode:2019ApJ...874...27T. doi:10.3847/1538-4357/ab0374. S2CID 55313459.CS1 maint: uses authors parameter (link)
  7. NASA, "New Gamma-Ray Burst Smashes Cosmic Distance Record", 28 April 2009
  8. Tanvir, N. R.; Fox, D. B.; Levan, A. J.; Berger, E.; Wiersema, K.; Fynbo, J. P. U.; Cucchiara, A.; Krühler, T.; Gehrels, N.; Bloom, J. S.; Greiner, J.; Evans, P. A.; Rol, E.; Olivares, F.; Hjorth, J.; Jakobsson, P.; Farihi, J.; Willingale, R.; Starling, R. L. C.; Cenko, S. B.; Perley, D.; Maund, J. R.; Duke, J.; Wijers, R. A. M. J.; Adamson, A. J.; Allan, A.; Bremer, M. N.; Burrows, D. N.; Castro-Tirado, A. J.; et al. (2009). "A gamma-ray burst at a redshift of z~8.2". Nature. 461 (7268): 1254–7. arXiv:0906.1577. Bibcode:2009Natur.461.1254T. doi:10.1038/nature08459. PMID 19865165. S2CID 205218350.
  9. P. A. Oesch, P. G. van Dokkum, G. D. Illingworth, R. J. Bouwens, I. Momcheva, B. Holden, G. W. Roberts-Borsani, R. Smit, M. Franx, I. Labbe, V. Gonzalez, D. Magee (2015). "A Spectroscopic Redshift Measurement for a Luminous Lyman Break Galaxy at z = 7.730 using Keck/MOSFIRE". The Astrophysical Journal. 804 (2): L30. arXiv:1502.05399. Bibcode:2015ApJ...804L..30O. doi:10.1088/2041-8205/804/2/L30. S2CID 55115344.CS1 maint: uses authors parameter (link)
  10. Song, M.; Finkelstein, S. L.; Livermore, R. C.; Capak, P. L.; Dickinson, M.; Fontana, A. (2016). "Keck/MOSFIRE Spectroscopy of z = 7–8 Galaxies: Lyman-alpha Emission from a Galaxy at z = 7.66". The Astrophysical Journal. 826 (2): 113. arXiv:1602.02160. Bibcode:2016ApJ...826..113S. doi:10.3847/0004-637X/826/2/113. S2CID 51806693.
  11. Maria Temming (January 18, 2021), "The most ancient supermassive black hole is bafflingly big", Science News
  12. A Luminous Quasar at a Redshift of z=7.64, presentation at 237th Meeting of the American Astronomical Society, January 12, 2021
  13. S. L. Finkelstein, C. Papovich, M. Dickinson, M. Song, V. Tilvi, A. M. Koekemoer, K. D. Finkelstein, B. Mobasher, H. C. Ferguson, M. Giavalisco, N. Reddy, M. L. N. Ashby, A. Dekel, G. G. Fazio, A. Fontana, N. A. Grogin, J.-S. Huang, D. Kocevski, M. Rafelski, B. J. Weiner, S. P. Willner (2013). "A galaxy rapidly forming stars 700 million years after the Big Bang at redshift 7.51". Nature. 502 (7472): 524–527. arXiv:1310.6031. Bibcode:2013Natur.502..524F. doi:10.1038/nature12657. PMID 24153304. S2CID 4448085.CS1 maint: uses authors parameter (link)
  14. Morelle, R. (23 October 2013). "New galaxy 'most distant' yet discovered". BBC News.
  15. Watson, Darach; Christensen, Lise; Knudsen, Kirsten Kraiberg; Richard, Johan; Gallazzi, Anna; Michałowski, Michał Jerzy (2015). "A dusty, normal galaxy in the epoch of reionization". Nature. 519 (7543): 327–330. arXiv:1503.00002. Bibcode:2015Natur.519..327W. doi:10.1038/nature14164. PMID 25731171. S2CID 2514879.
  16. Larson, R. L.; Finkelstein, S. L.; Pirzkal, N.; Ryan, R.; Tilvi, V.; Malhotra, S.; Rhoads, J.; Finkelstein, K.; Jung, I.; Christensen, L.; Cimatti, A.; Ferreras, I.; Grogin, N.; Koekemoer, A. M.; Hathi, N.; O'Connell, R.; Östlin, G.; Pasquali, A.; Pharo, J.; Rothberg, B.; Windhorst, R. A. (2018). "Discovery of a z = 7.452 High Equivalent Width Lyman alpha Emitter from the Hubble Space Telescope Faint Infrared Grism Survey". The Astrophysical Journal. 858 (2): 113. arXiv:1712.05807. Bibcode:2018ApJ...858...94L. doi:10.3847/1538-4357/aab893. S2CID 119257857.
  17. "SXDF-NB1006-2 – Thirty Meter Telescope". Archived from the original on 2013-05-24. Retrieved 2012-11-18.
  18. "Press Release".
  19. "NASA – NASA Telescopes Help Find Rare Galaxy at Dawn of Time".
  20. Vanzella; et al. (2011). "Spectroscopic Confirmation of Two Lyman Break Galaxies at Redshift Beyond 7". The Astrophysical Journal Letters. 730 (2): L35. arXiv:1011.5500. Bibcode:2011ApJ...730L..35V. doi:10.1088/2041-8205/730/2/L35. S2CID 53459241.
  21. Scientific American, "Brilliant, but Distant: Most Far-Flung Known Quasar Offers Glimpse into Early Universe", John Matson, 29 June 2011
  22. Fontana, A.; Vanzella, E.; Pentericci, L.; Castellano, M.; Giavalisco, M.; Grazian, A.; Boutsia, K.; Cristiani, S.; Dickinson, M.; Giallongo, E.; Maiolino, M.; Moorwood, A.; Santini, P. (2010). "The lack of intense Lyman~alpha in ultradeep spectra of z = 7 candidates in GOODS-S: Imprint of reionization?". The Astrophysical Journal. 725 (2): L205. arXiv:1010.2754. Bibcode:2010ApJ...725L.205F. doi:10.1088/2041-8205/725/2/L205. S2CID 119270473.
  23. Hogan, Jenny (2006). "Journey to the birth of the Universe". Nature. 443 (7108): 128–129. Bibcode:2006Natur.443..128H. doi:10.1038/443128a. PMID 16971914.
  24. Ono, Yoshiaki; Ouchi, Masami; Mobasher, Bahram; Dickinson, Mark; Penner, Kyle; Shimasaku, Kazuhiro; Weiner, Benjamin J.; Kartaltepe, Jeyhan S.; Nakajima, Kimihiko; Nayyeri, Hooshang; Stern, Daniel; Kashikawa, Nobunari; Spinrad, Hyron (2011). "Spectroscopic Confirmation of Three z-Dropout Galaxies at z = 6.844 – 7.213: Demographics of Lyman-Alpha Emission in z ~ 7 Galaxies". The Astrophysical Journal. 744 (2): 83. arXiv:1107.3159. Bibcode:2012ApJ...744...83O. doi:10.1088/0004-637X/744/2/83. S2CID 119306980.
  25. Rhoads, James E.; Hibon, Pascale; Malhotra, Sangeeta; Cooper, Michael; Weiner, Benjamin (2012). "A Lyman Alpha Galaxy at Redshift z = 6.944 in the COSMOS Field". The Astrophysical Journal. 752 (2): L28. arXiv:1205.3161. Bibcode:2012ApJ...752L..28R. doi:10.1088/2041-8205/752/2/L28. S2CID 118383532.
  26. "Farthest Radio Loud Quasar Discovered". Florida News Times. Florida News Times. Retrieved 26 March 2021.
  27. Garth Illingworth; Rychard Bouwens; Pascal Oesch; Ivo Labbe; Dan Magee (December 2012). "Our Latest Results". FirstGalaxies. Retrieved March 10, 2016.
  28. Wall, Mike (December 12, 2012). "Ancient Galaxy May Be Most Distant Ever Seen". Retrieved December 12, 2012. 13.75 Big Bang – 0.38=13.37
  29. NASA, "NASA's Hubble Finds Most Distant Galaxy Candidate Ever Seen in Universe", 26 January 2011
  30. "Hubble finds a new contender for galaxy distance record". Space Telescope (heic1103 – Science Release). 26 January 2011. Retrieved 2011-01-27.
  31. HubbleSite, "NASA's Hubble Finds Most Distant Galaxy Candidate Ever Seen in Universe", STScI-2011-05, 26 January 2011
  32. Brammer, Gabriel B.; Van Dokkum, Pieter G.; Illingworth, Garth D.; Bouwens, Rychard J.; Labbé, Ivo; Franx, Marijn; Momcheva, Ivelina; Oesch, Pascal A. (2013). "A Tentative Detection of an Emission Line at 1.6 mum for the z ~ 12 Candidate". The Astrophysical Journal Letters. 765 (1): L2. arXiv:1301.0317. Bibcode:2013ApJ...765L...2B. doi:10.1088/2041-8205/765/1/L2. S2CID 119226564.
  33. Bouwens, R. J.; Oesch, P. A.; Illingworth, G. D.; Labbé, I.; Van Dokkum, P. G.; Brammer, G.; Magee, D.; Spitler, L. R.; Franx, M.; Smit, R.; Trenti, M.; Gonzalez, V.; Carollo, C. M. (2013). "Photometric Constraints on the Redshift of z ~ 10 Candidate UDFj-39546284 from D". The Astrophysical Journal Letters. 765 (1): L16. arXiv:1211.3105. Bibcode:2013ApJ...765L..16B. doi:10.1088/2041-8205/765/1/L16. S2CID 118570916.
  34. [email protected] "Hubble spots three magnified views of most distant known galaxy".
  35. KDE Group, University of Kassel; DMIR Group, University of Würzburg & L3S Research Center. "BibSonomy".
  36. Salmon, Brett; Coe, Dan; Bradley, Larry; Bradač, Marusa; Huang, Kuang-Han; Strait, Victoria; Oesch, Pascal; Paterno-Mahler, Rachel; Zitrin, Adi; Acebron, Ana; Cibirka, Nathália; Kikuchihara, Shotaro; Oguri, Masamune; Brammer, Gabriel B; Sharon, Keren; Trenti, Michele; Avila, Roberto J; Ogaz, Sara; Andrade-Santos, Felipe; Carrasco, Daniela; Cerny, Catherine; Dawson, William; Frye, Brenda L; Hoag, Austin; Jones, Christine; Mainali, Ramesh; Ouchi, Masami; Rodney, Steven A; Stark, Daniel; Umetsu, Keiichi (2018). "A Candidate z∼10 Galaxy Strongly Lensed into a Spatially Resolved Arc". The Astrophysical Journal. 864: L22. arXiv:1801.03103. doi:10.3847/2041-8213/aadc10. S2CID 78087820.
  37. "Hubble Finds Distant Galaxy Through Cosmic Magnifying Glass". NASA.
  38. Zitrin, Adi; Zheng, Wei; Broadhurst, Tom; Moustakas, John; Lam, Daniel; Shu, Xinwen; Huang, Xingxing; Diego, Jose M.; Ford, Holland; Lim, Jeremy; Bauer, Franz E.; Infante, Leopoldo; Kelson, Daniel D.; Molino, Alberto (2014). "A GEOMETRICALLY SUPPORTED z ∼ 10 CANDIDATE MULTIPLY IMAGED BY THE HUBBLE FRONTIER FIELDS CLUSTER A2744" (PDF). The Astrophysical Journal. 793 (1): L12. arXiv:1407.3769. Bibcode:2014ApJ...793L..12Z. doi:10.1088/2041-8205/793/1/L12. S2CID 43853349.
  39. "NASA – NASA Telescopes Spy Ultra-Distant Galaxy".
  40. Zheng, W.; Postman, M.; Zitrin, A.; Moustakas, J.; Shu, X.; Jouvel, S.; Høst, O.; Molino, A.; Bradley, L.; Coe, D.; Moustakas, L. A.; Carrasco, M.; Ford, H.; Benítez, N.; Lauer, T. R.; Seitz, S.; Bouwens, R.; Koekemoer, A.; Medezinski, E.; Bartelmann, M.; Broadhurst, T.; Donahue, M.; Grillo, C.; Infante, L.; Jha, S. W.; Kelson, D. D.; Lahav, O.; Lemze, D.; Melchior, P.; Meneghetti, M. (2012). "A magnified young galaxy from about 500 million years after the Big Bang". Nature. 489 (7416): 406–408. arXiv:1204.2305. Bibcode:2012Natur.489..406Z. doi:10.1038/nature11446. PMID 22996554. S2CID 4415218.
  41. Penn State SCIENCE, "Cosmic Explosion is New Candidate for Most Distant Object in the Universe", Derek. B. Fox , Barbara K. Kennedy , 25 May 2011
  42. Space Daily, Explosion Helps Researcher Spot Universe's Most Distant Object, 27 May 2011
  43. "ESA Science & Technology: The Hubble eXtreme Deep Field (annotated)".
  44. David Shiga. "Dim galaxy is most distant object yet found". New Scientist.
  45. Bunker, Andrew J.; Caruana, Joseph; Wilkins, Stephen M.; Stanway, Elizabeth R.; Lorenzoni, Silvio; Lacy, Mark; Jarvis, Matt J.; Hickey, Samantha (2013). "VLT/XSHOOTER and Subaru/MOIRCS spectroscopy of HUDF.YD3: no evidence for Lyman &". Monthly Notices of the Royal Astronomical Society. 430 (4): 3314. arXiv:1301.4477. Bibcode:2013MNRAS.430.3314B. doi:10.1093/mnras/stt132.
  46. Trenti, M.; Bradley, L. D.; Stiavelli, M.; Shull, J. M.; Oesch, P.; Bouwens, R. J.; Munoz, J. A.; Romano-Diaz, E.; Treu, T.; Shlosman, I.; Carollo, C. M. (2011). "Overdensities of Y-dropout Galaxies from the Brightest-of-Reionizing Galaxies Su". The Astrophysical Journal. 746 (1): 55. arXiv:1110.0468. Bibcode:2012ApJ...746...55T. doi:10.1088/0004-637X/746/1/55. S2CID 119294290.
  47. Drake, Nadia (March 3, 2016). "Astronomers Spot Most Distant Galaxy—At Least For Now". National Geographic. Retrieved April 13, 2019.
  48. Wang, Tao; Elbaz, David; Daddi, Emanuele; Finoguenov, Alexis; Liu, Daizhong; Schrieber, Corenin; Martin, Sergio; Strazzullo, Veronica; Valentino, Francesco; van Der Burg, Remco; Zanella, Anita; Cisela, Laure; Gobat, Raphael; Le Brun, Amandine; Pannella, Maurilio; Sargent, Mark; Shu, Xinwen; Tan, Qinghua; Cappelluti, Nico; Li, Xanxia (2016). "Discovery of a galaxy cluster with a violently starbursting core at z=2.506". The Astrophysical Journal. 828 (1): 56. arXiv:1604.07404. Bibcode:2016ApJ...828...56W. doi:10.3847/0004-637X/828/1/56. S2CID 8771287.
  49. Bañados, Eduardo; et al. (6 December 2017). "An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5". Nature. 553 (7689): 473–476. arXiv:1712.01860. Bibcode:2018Natur.553..473B. doi:10.1038/nature25180. PMID 29211709. S2CID 205263326.
  50. Science Codex, "GRB 090429B – most distant gamma-ray burst yet" Archived 2011-05-31 at the Wayback Machine, NASA/Goddard, 27 May 2011
  51. Sky and Telescope, "The Most Distant Star Ever Seen?", Camille M. Carlisle, 12 April 2013
  52. Paper, "An individual star at redshift 1.5 extremely magnified by a galaxy-cluster lens", P. Kelly, J.M. Diego et al, June 2017
  53. Kelly, Patrick L.; et al. (2 April 2018). "Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens". Nature. 2 (4): 334–342. arXiv:1706.10279. Bibcode:2018NatAs...2..334K. doi:10.1038/s41550-018-0430-3. S2CID 125826925.
  54. Howell, Elizabeth (2 April 2018). "Rare Cosmic Alignment Reveals Most Distant Star Ever Seen". Retrieved 2 April 2018.
  55. Sanders, Robert (2 April 2018). "Hubble peers through cosmic lens to capture most distant star ever seen". Berkeley News. Retrieved 2 April 2018.
  56. Parks, Jake (2 April 2018). "Hubble spots farthest star ever seen". Astronomy. Retrieved 2 April 2018.
  57. New Scientist, "Lucky Hubble find raises star cluster mystery", Rachel Courtland, 8 July 2008 (accessed 18 December 2012)
  58. Astronomy Magazine, "A star cluster hides star clusters", Francis Reddy, 10 January 2007 (accessed 18 December 2012)
  59., "Faraway Galaxy Plays Peekaboo", Ker Than, 10 January 2007 (accessed 18 December 2012)
  60. ScienceDaily, "Astronomers Find The Most Distant Star Clusters Hidden Behind A Nearby Cluster", 14 January 2007 (accessed 18 December 2012)
  61. Kalirai, Jason S.; Richer, H.; Anderson, J.; Strader, J.; Forde, K.; "Globular Clusters in a Globular Cluster", 2007 AAS/AAPT Joint Meeting, American Astronomical Society Meeting 209, #228.02; Bulletin of the American Astronomical Society, Vol. 38, p.1214, December 2006; Bibcode:2006AAS...20922802K
  64. SpaceDaily, "Record-Setting X-ray Jet Discovered", 30 November 2012 (accessed 4 December 2012)
  65. ESA, "Artist's impression of the X-ray binary XMMU J004243.6+412519", 12 December 2012 (accessed 18 December 2012)
  66. e! Science News, "XMMU J004243.6+412519: Black-Hole Binary At The Eddington Limit", 12 December 2012 (accessed 18 December 2012)
  67. SpaceDaily, "Microquasar found in neighbor galaxy, tantalizing scientists", 17 December 2012 (accessed 18 December 2012)
  68. USA Today, "Smallest, most distant planet outside solar system found", Malcolm Ritter, 25 January 2006 (accessed 5 August 2010)
  69. Schneider, J. "Notes for star PA-99-N2". The Extrasolar Planets Encyclopaedia. Retrieved 2010-08-06.
  70., "The Microlensing Event of Q0957+561" Archived 2012-02-11 at the Wayback Machine (accessed 5 August 2010)
  71. Schild, R.E. (1996). "Microlensing Variability of the Gravitationally Lensed Quasar Q0957+561 A,B". Astrophysical Journal. 464: 125. Bibcode:1996ApJ...464..125S. doi:10.1086/177304.
  72. Cooke, Jeff; Sullivan, Mark; Gal-Yam, Avishay; Barton, Elizabeth J.; Carlberg, Raymond G.; Ryan-Weber, Emma V.; Horst, Chuck; Omori, Yuuki; Díaz, C. Gonzalo (2012). "Superluminous supernovae at redshifts of 2.05 and 3.90". Nature. 491 (7423): 228–31. arXiv:1211.2003. Bibcode:2012Natur.491..228C. doi:10.1038/nature11521. PMID 23123848. S2CID 4397580.
  73. [email protected] "Record-breaking supernova in the CANDELS Ultra Deep Survey: before, after, and difference".
  74. Science Newsline, "The Farthest Supernova Yet for Measuring Cosmic History" Archived 2013-05-21 at the Wayback Machine, Lawrence Berkeley National Laboratory, 9 January 2013 (accessed 10 January 2013)
  75., "Most Distant 'Standard Candle' Star Explosion Found", Mike Wall, 9 January 2013 (accessed 10 January 2013)
  76. Hinshaw, G.; Weiland, J. L.; Hill, R. S.; Odegard, N.; Larson, D.; Bennett, C. L.; Dunkley, J.; Gold, B.; Greason, M. R.; Jarosik, N.; Komatsu, E.; Nolta, M. R.; Page, L.; Spergel, D. N.; Wollack, E.; Halpern, M.; Kogut, A.; Limon, M.; Meyer, S. S.; Tucker, G. S.; Wright, E. L. (2009). "Five-Year Wilkinson Microwave Anisotropy Probe Observations: Data Processing, Sky Maps, and Basic Results". Astrophysical Journal Supplement. 180 (2): 225–245. arXiv:0803.0732. Bibcode:2009ApJS..180..225H. doi:10.1088/0067-0049/180/2/225. S2CID 3629998.CS1 maint: uses authors parameter (link)
  77. Redshift states the Cosmic microwave background radiation as having a redshift of z = 1089
  78. Jonathan Amos (3 March 2016). "Hubble sets new cosmic distance record". BBC News.
  79. Mike Wall (5 August 2015). "Ancient Galaxy Is Most Distant Ever Found".
  80. W. M. Keck Observatory (6 August 2015). "A new record: Keck Observatory measures most distant galaxy". Astronomy Now.
  81. Mario De Leo Winkler (15 July 2015). "The Farthest Object in the Universe". Huffington Post.
  82. New Scientist, "Most distant object in the universe spotted", Rachel Courtland, 22:32 27 April 2009 . Retrieved 2009-11-11.
  83. New Scientist, "First generation of galaxies glimpsed forming", 'David Shiga ', 19:01 13 September 2006 (accessed 2009/11/11)
  84. Iye, M; Ota, K; Kashikawa, N; Furusawa, H; Hashimoto, T; Hattori, T; Matsuda, Y; Morokuma, T; Ouchi, M; Shimasaku, K (2006). "A galaxy at a redshift z = 6.96". Nature. 443 (7108): 186–8. arXiv:astro-ph/0609393. Bibcode:2006Natur.443..186I. doi:10.1038/nature05104. PMID 16971942. S2CID 2876103.
  85. Taniguchi, Yoshi (23 June 2008). "Star Forming Galaxies at z > 5". Proceedings of the International Astronomical Union. 3 (S250): 429–436. arXiv:0804.0644. Bibcode:2008IAUS..250..429T. doi:10.1017/S1743921308020796. S2CID 198472.
  86. Taniguchi, Yoshiaki; Ajiki, Masaru; Nagao, Tohru; Shioya, Yasuhiro; Murayama, Takashi; Kashikawa, Nobunari; Kodaira, Keiichi; Kaifu, Norio; Ando, Hiroyasu; Karoji, Hiroshi; Akiyama, Masayuki; Aoki, Kentaro; Doi, Mamoru; Fujita, Shinobu S.; Furusawa, Hisanori; Hayashino, Tomoki; Iwamuro, Fumihide; Iye, Masanori; Kobayashi, Naoto; Kodama, Tadayuki; Komiyama, Yutaka; Matsuda, Yuichi; Miyazaki, Satoshi; Mizumoto, Yoshihiko; Morokuma, Tomoki; Motohara, Kentaro; Nariai, Kyoji; Ohta, Koji; Ohyama, Youichi; et al. (2005). "The SUBARU Deep Field Project: Lymanα Emitters at a Redshift of 6.6" (PDF). Publications of the Astronomical Society of Japan. 57: 165–182. arXiv:astro-ph/0407542. Bibcode:2005PASJ...57..165T. doi:10.1093/pasj/57.1.165.
  87. BBC News, Most distant galaxy detected, Tuesday, 25 March 2003, 14:28 GMT
  88. SpaceRef, Subaru Telescope Detects the Most Distant Galaxy Yet and Expects Many More, Monday, March 24, 2003
  89. Kodaira, K.; Taniguchi, Y.; Kashikawa, N.; Kaifu, N.; Ando, H.; Karoji, H.; Ajiki, Masaru; Akiyama, Masayuki; Aoki, Kentaro; Doi, Mamoru; Fujita, Shinobu S.; Furusawa, Hisanori; Hayashino, Tomoki; Imanishi, Masatoshi; Iwamuro, Fumihide; Iye, Masanori; Kawabata, Koji S.; Kobayashi, Naoto; Kodama, Tadayuki; Komiyama, Yutaka; Kosugi, George; Matsuda, Yuichi; Miyazaki, Satoshi; Mizumoto, Yoshihiko; Motohara, Kentaro; Murayama, Takashi; Nagao, Tohru; Nariai, Kyoji; Ohta, Kouji; et al. (2003). "The Discovery of Two Lyman$α$ Emitters Beyond Redshift 6 in the Subaru Deep Field". Publications of the Astronomical Society of Japan. 55 (2): L17. arXiv:astro-ph/0301096. Bibcode:2003PASJ...55L..17K. doi:10.1093/pasj/55.2.L17.
  90. New Scientist, New record for Universe's most distant object, 17:19 14 March 2002
  91. BBC News, Far away stars light early cosmos, Thursday, 14 March 2002, 11:38 GMT
  92. Hu, E. M. (2002). "A Redshift [CLC][ITAL]z[/ITAL][/CLC] = 6.56 Galaxy behind the Cluster Abell 370". The Astrophysical Journal. 568 (2): L75–L79. arXiv:astro-ph/0203091. Bibcode:2002ApJ...568L..75H. doi:10.1086/340424.
  93. "K2.1 HCM 6A — Discovery of a redshift z = 6.56 galaxy lying behind the cluster Abell 370". 2008-04-14. Archived from the original on 2011-05-18. Retrieved 2010-10-22.
  94. Pentericci, L.; Fan, X.; Rix, H. W.; Strauss, M. A.; Narayanan, V. K.; Richards, G T.; Schneider, D. P.; Krolik, J.; Heckman, T.; Brinkmann, J.; Lamb, D. Q.; Szokoly, G. P. (2002). "VLT observations of the z = 6.28 quasar SDSS 1030+0524". The Astronomical Journal. 123 (5): 2151. arXiv:astro-ph/0112075. Bibcode:2002AJ....123.2151P. doi:10.1086/340077.
  95. The Astrophysical Journal, 578:702–707, 20 October 2002, A Constraint on the Gravitational Lensing Magnification and Age of the Redshift z = 6.28 Quasar SDSS 1030+0524
  96. White, Richard L.; Becker, Robert H.; Fan, Xiaohui; Strauss, Michael A. (2003). "Probing the Ionization State of the Universe atz>6". The Astronomical Journal. 126 (1): 1–14. arXiv:astro-ph/0303476. Bibcode:2003AJ....126....1W. doi:10.1086/375547. S2CID 51505828.
  97. Farrah, D.; Priddey, R.; Wilman, R.; Haehnelt, M.; McMahon, R. (2004). "The X-Ray Spectrum of the z = 6.30 QSO SDSS J1030+0524". The Astrophysical Journal. 611 (1): L13–L16. arXiv:astro-ph/0406561. Bibcode:2004ApJ...611L..13F. doi:10.1086/423669. S2CID 14854831.
  98. PennState Eberly College of Science, Discovery Announced of Two Most Distant Objects Archived 2007-11-21 at the Wayback Machine, June 2001
  99. SDSS, Early results from the Sloan Digital Sky Survey: From under our nose to the edge of the universe, June 2001
  100. PennState – Eberly College of Science – Science Journal – Summer 2000 – Vol. 17, No. 1 International Team of Astronomers Finds Most Distant Object Archived 2009-09-12 at the Wayback Machine
  101. The Astrophysical Journal Letters, 522:L9–L12, 1999 September 1, An Extremely Luminous Galaxy at z = 5.74
  102. PennState Eberly College of Science, X-rays from the Most Distant Quasar Captured with the XMM-Newton Satellite Archived 2007-11-21 at the Wayback Machine, Dec 2000
  103. UW-Madison Astronomy, Confirmed High Redshift (z > 5.5) Galaxies – (Last Updated 10th February 2005) Archived 2007-06-18 at the Wayback Machine
  104., Most Distant Object in Universe Comes Closer, 01 December 2000
  105. The Astrophysical Journal Letters, 522:L9–L12, September 1, 1999, An Extremely Luminous Galaxy at z = 5.74
  106. Publications of the Astronomical Society of the Pacific, 111: 1475–1502, 1999 December; Search Techniques for Distant Galaxies; Introduction
  107. New York Times, Peering Back in Time, Astronomers Glimpse Galaxies Aborning, October 20, 1998
  108. Astronomy Picture of the Day, A Baby Galaxy, March 24, 1998
  109. Dey, Arjun; Spinrad, Hyron; Stern, Daniel; Graham, James R.; Chaffee, Frederic H. (1998). "A Galaxy at z = 5.34". The Astrophysical Journal. 498 (2): L93. arXiv:astro-ph/9803137. Bibcode:1998ApJ...498L..93D. doi:10.1086/311331.
  110. "A New Most Distant Object: z = 5.34". Retrieved 2010-10-22.
  111. Astronomy Picture of the Day, Behind CL1358+62: A New Farthest Object, July 31, 1997
  112. Franx, Marijn; Illingworth, Garth D.; Kelson, Daniel D.; Van Dokkum, Pieter G.; Tran, Kim-Vy (1997). "A Pair of Lensed Galaxies at [CLC][ITAL]z[/ITAL][/CLC]=4.92 in the Field of CL 1358+62". The Astrophysical Journal. 486 (2): L75. arXiv:astro-ph/9704090. Bibcode:1997ApJ...486L..75F. doi:10.1086/310844. S2CID 14502310.
  113. Illingworth, Garth (1999). "Galaxies at High Redshift". Astrophysics and Space Science. 269/270: 165–181. arXiv:astro-ph/0009187. Bibcode:1999Ap&SS.269..165I. doi:10.1023/a:1017052809781. S2CID 119363931.
  114. Smith, J. D.; Djorgovski, S.; Thompson, D.; Brisken, W. F.; Neugebauer, G.; Matthews, K.; Meylan, G.; Piotto, G.; Suntzeff, N. B. (1994). "Multicolor detection of high-redshift quasars, 2: Five objects with Z greater than or approximately equal to 4". The Astronomical Journal. 108: 1147. Bibcode:1994AJ....108.1147S. doi:10.1086/117143.
  115. New Scientist, issue 1842, 10 October 1992, page 17, Science: Infant galaxy's light show
  116. FermiLab Scientists of Sloan Digital Sky Survey Discover Most Distant Quasar Archived 2009-09-12 at the Wayback Machine December 8, 1998
  117. Hook, Isobel M.; McMahon, Richard G. (1998). "Discovery of radio-loud quasars with z = 4.72 and z = 4.01". Monthly Notices of the Royal Astronomical Society. 294 (1): L7–L12. arXiv:astro-ph/9801026. Bibcode:1998MNRAS.294L...7H. doi:10.1046/j.1365-8711.1998.01368.x.
  118. Turner, Edwin L. (1991). "Quasars and galaxy formation. I – the Z greater than 4 objects". Astronomical Journal. 101: 5. Bibcode:1991AJ....101....5T. doi:10.1086/115663.
  119. SIMBAD, Object query : PC 1158+4635, QSO B1158+4635 -- Quasar
  120. Cowie, Lennox L. (1991). "Young Galaxies". Annals of the New York Academy of Sciences. 647 (1 Texas/ESO–Cer): 31–41. Bibcode:1991NYASA.647...31C. doi:10.1111/j.1749-6632.1991.tb32157.x. S2CID 222074763.
  121. New York Times, Peering to Edge of Time, Scientists Are Astonished, November 20, 1989
  122. Warren, S. J.; Hewett, P. C.; Osmer, P. S.; Irwin, M. J. (1987). "Quasars of redshift z = 4.43 and z = 4.07 in the South Galactic Pole field". Nature. 330 (6147): 453. Bibcode:1987Natur.330..453W. doi:10.1038/330453a0. S2CID 4352819.
  123. Levshakov, S. A. (1989). "Absorption spectra of quasars". Astrophysics. 29 (2): 657–671. Bibcode:1988Ap.....29..657L. doi:10.1007/BF01005972. S2CID 122978350.
  124. New York Times, Objects Detected in Universe May Be the Most Distant Ever Sighted, January 14, 1988
  125. New York Times, Astronomers Peer Deeper Into Cosmos, May 10, 1988
  126. SIMBAD, Object query : Q0000-26, QSO B0000-26 – Quasar
  127. Schmidt, Maarten; Schneider, Donald P.; Gunn, James E. (1987). "PC 0910 + 5625 – an optically selected quasar with a redshift of 4.04". Astrophysical Journal. 321: L7. Bibcode:1987ApJ...321L...7S. doi:10.1086/184996.
  128. SIMBAD, Object query : PC 0910+5625, QSO B0910+5625 -- Quasar
  129. Warren, S. J.; Hewett, P. C.; Irwin, M. J.; McMahon, R. G.; Bridgeland, M. T.; Bunclark, P. S.; Kibblewhite, E. J. (1987). "First observation of a quasar with a redshift of 4". Nature. 325 (6100): 131. Bibcode:1987Natur.325..131W. doi:10.1038/325131a0. S2CID 4335291.
  130. SIMBAD, Object query : Q0046-293, QSO J0048-2903 -- Quasar
  131. SIMBAD, Object query : Q1208+1011, QSO B1208+1011 – Quasar
  132. New Scientist, Quasar doubles help to fix the Hubble constant, 16 November 1991
  133. Orwell Astronomical Society (Ipswich) – OASI ; Archived Astronomy News Items, 1972–1997 Archived 2009-09-12 at the Wayback Machine
  134. SIMBAD, Object query : PKS 2000-330, QSO J2003-3251 – Quasar
  135. OSU Big Ear, History of the OSU Radio Observatory
  136. SIMBAD, Object query : OQ172, QSO B1442+101 – Quasar
  138. Time Magazine, The Edge of Night, Monday, Apr. 23, 1973
  139. SIMBAD, Object query : OH471, QSO B0642+449 – Quasar
  140. Warren, S J; Hewett, P C (1990). "The detection of high-redshift quasars". Reports on Progress in Physics. 53 (8): 1095. Bibcode:1990RPPh...53.1095W. doi:10.1088/0034-4885/53/8/003.
  141. The Structure of the Physical Universe, Volume III – The Universe of Motion, CHAPTER 23 – Quasar Redshifts Archived 2008-06-19 at the Wayback Machine, by Dewey Bernard Larson, Library of Congress Catalog Card No. 79-88078, ISBN 0-913138-11-8 , Copyright © 1959, 1971, 1984
  142. Bahcall, John N.; Oke, J. B. (1971). "Some Inferences from Spectrophotometry of Quasi-Stellar Sources". Astrophysical Journal. 163: 235. Bibcode:1971ApJ...163..235B. doi:10.1086/150762.
  143. Lynds, R.; Wills, D. (1970). "The Unusually Large Redshift of 4C 05.34". Nature. 226 (5245): 532. Bibcode:1970Natur.226..532L. doi:10.1038/226532a0. PMID 16057373. S2CID 28297458.
  144. SIMBAD, Object query : 5C 02.56, 7C 105517.75+495540.95 – Quasar
  145. Burbidge, Geoffrey (1968). "The Distribution of Redshifts in Quasi-Stellar Objects, N-Systems and Some Radio and Compact Galaxies". Astrophysical Journal. 154: L41. Bibcode:1968ApJ...154L..41B. doi:10.1086/180265.
  146. Time Magazine, A Farther-Out Quasar, Friday, Apr. 07, 1967
  147. SIMBAD, Object query : QSO B0237-2321, QSO B0237-2321 – Quasar
  148. Burbidge, Geoffrey (1967). "On the Wavelengths of the Absorption Lines in Quasi-Stellar Objects". Astrophysical Journal. 147: 851. Bibcode:1967ApJ...147..851B. doi:10.1086/149072.
  149. Time Magazine, The Man on the Mountain, Friday, Mar. 11, 1966
  150. SIMBAD, Object query : Q1116+12, 4C 12.39 – Quasar
  151. SIMBAD, Object query : Q0106+01, 4C 01.02 – Quasar
  152. Time Magazine, Toward the Edge of the Universe, Friday, May. 21, 1965
  153. Time Magazine, The Quasi-Quasars, Friday, Jun. 18, 1965
  154. The Cosmic Century: A History of Astrophysics and Cosmology p. 379 by Malcolm S. Longair – 2006
  155. Schmidt, Maarten (1965). "Large Redshifts of Five Quasi-Stellar Sources". Astrophysical Journal. 141: 1295. Bibcode:1965ApJ...141.1295S. doi:10.1086/148217.
  156. The Discovery of Radio Galaxies and Quasars, 1965
  157. Schmidt, Maarten; Matthews, Thomas A. (1965). "Redshifts of the Quasi-Stellar Radio Sources 3c 47 and 3c 147". Quasi-Stellar Sources and Gravitational Collapse: 269. Bibcode:1965qssg.conf..269S.
  158. Schneider, Donald P.; Van Gorkom, J. H.; Schmidt, Maarten; Gunn, James E. (1992). "Radio properties of optically selected high-redshift quasars. I – VLA observations of 22 quasars at 6 CM". Astronomical Journal. 103: 1451. Bibcode:1992AJ....103.1451S. doi:10.1086/116159.
  159. Time Magazine, Finding the Fastest Galaxy: 76,000 Miles per Second[permanent dead link], Friday, Apr. 10, 1964
  160. Schmidt, Maarten; Matthews, Thomas A. (1964). "Redshift of the Quasi-Stellar Radio Sources 3c 47 and 3c 147". Astrophysical Journal. 139: 781. Bibcode:1964ApJ...139..781S. doi:10.1086/147815.
  161. "The Discovery of Radio Galaxies and Quasars". Retrieved 2010-10-22.
  162. McCarthy, Patrick J. (1993). "High Redshift Radio Galaxies". Annual Review of Astronomy and Astrophysics. 31: 639–688. Bibcode:1993ARA&A..31..639M. doi:10.1146/annurev.aa.31.090193.003231.
  163. Sandage, Allan (1961). "The Ability of the 200-INCH Telescope to Discriminate Between Selected World Models". Astrophysical Journal. 133: 355. Bibcode:1961ApJ...133..355S. doi:10.1086/147041.
  164. Hubble, E. P. (1953). "The law of red shifts (George Darwin Lecture)". Monthly Notices of the Royal Astronomical Society. 113 (6): 658–666. Bibcode:1953MNRAS.113..658H. doi:10.1093/mnras/113.6.658.
  165. Sandage, Allan. "Observational Tests of World Models: 6.1. Local Tests for Linearity of the Redshift-Distance Relation". Annu. Rev. Astron. Astrophys. 1988 (26): 561–630.
  166. Humason, M. L.; Mayall, N. U.; Sandage, A. R. (1956). "Redshifts and magnitudes of extragalactic nebulae". Astronomical Journal. 61: 97. Bibcode:1956AJ.....61...97H. doi:10.1086/107297.
  167. "1053 May 8 meeting of the Royal Astronomical Society". The Observatory. 73: 97. 1953. Bibcode:1953Obs....73...97.
  168. Merrill, Paul W. (1958). "From Atoms to Galaxies". Astronomical Society of the Pacific Leaflets. 7 (349): 393. Bibcode:1958ASPL....7..393M.
  169. Humason, M. L. (January 1936). "The Apparent Radial Velocities of 100 Extra-Galactic Nebulae". The Astrophysical Journal. 83: 10. Bibcode:1936ApJ....83...10H. doi:10.1086/143696.
  170. "The First 50 Years At Palomar: 1949–1999 ; The Early Years of Stellar Evolution, Cosmology, and High-Energy Astrophysics'; 5.2.1. The Mount Wilson Years ; Annu. Rev. Astron. Astrophys. 1999. 37: 445–486
  171. Chant, C. A. (1 April 1932). "Notes and Queries (Doings at Mount Wilson-Ritchey's Photographic Telescope-Infra-red Photographic Plates)". Journal of the Royal Astronomical Society of Canada. 26: 180. Bibcode:1932JRASC..26..180C.
  172. Humason, Milton L. (July 1931). "Apparent Velocity-Shifts in the Spectra of Faint Nebulae". The Astrophysical Journal. 74: 35. Bibcode:1931ApJ....74...35H. doi:10.1086/143287.
  173. Hubble, Edwin; Humason, Milton L. (July 1931). "The Velocity-Distance Relation among Extra-Galactic Nebulae". The Astrophysical Journal. 74: 43. Bibcode:1931ApJ....74...43H. doi:10.1086/143323.
  174. Humason, M. L. (1 January 1931). "The Large Apparent Velocities of Extra-Galactic Nebulae". Leaflet of the Astronomical Society of the Pacific. 1 (37): 149. Bibcode:1931ASPL....1..149H.
  175. Humason, M. L. (1930). "The Rayton short-focus spectrographic objective". Astrophysical Journal. 71: 351. Bibcode:1930ApJ....71..351H. doi:10.1086/143255.
  176. Trimble, Virginia (1996). "H_0: The Incredible Shrinking Constant, 1925–1975" (PDF). Publications of the Astronomical Society of the Pacific. 108: 1073. Bibcode:1996PASP..108.1073T. doi:10.1086/133837.
  177. "The Berkeley Meeting of the Astronomical Society of the Pacific, June 20–21, 1929". Publications of the Astronomical Society of the Pacific. 41 (242): 244. 1929. Bibcode:1929PASP...41..244.. doi:10.1086/123945.
  178. From the Proceedings of the National Academy of Sciences; Volume 15 : March 15, 1929 : Number 3 ; The Large Radial Velocity of N. G. C. 7619 ; January 17, 1929
  179. The Journal of the Royal Astronomical Society of Canada / Journal de la Société Royale D'astronomie du Canada; Vol. 83, No.6 December 1989 Whole No. 621 ; EDWIN HUBBLE 1889–1953
  180. National Academy of Sciences; Biographical Memoirs: V. 52 – Vesto Melvin Slipher; ISBN 0-309-03099-4
  181. Bailey, S. I. (1920). "Comet Skjellerup". Harvard College Observatory Bulletin. 739: 1. Bibcode:1920BHarO.739....1B.
  182. New York Times, DREYER NEBULA NO. 584 Inconceivably Distant; Dr. Slipher Says the Celestial Speed Champion Is 'Many Millions of Light Years' Away. ; January 19, 1921, Wednesday
  183. New York Times, Nebula Dreyer Breaks All Sky Speed Records; Portion of the Constellation of Cetus Is Rushing Along at Rate of 1,240 Miles a Second. ; January 18, 1921, Tuesday
  184. Hawera & Normanby Star, "Items of Interest", 29 December 1910, Volume LX, page 3 . Retrieved 25 March 2010.
  185. Evening Star (San Jose), "Colossal Arcturus", Pittsburgh Dispatch, 10 June 1910 . Retrieved 25 March 2010.
  186. Nelson Evening Mail, "British Bloodthirstiness", 2 November 1891, Volume XXV, Issue 230, Page 3 . Retrieved 25 March 2010.
  187. "Handbook of astronomy", Dionysius Lardner & Edwin Dunkin, Lockwood & Co. (1875), p.121
  188. "The Three Heavens", Josiah Crampton, William Hunt and Company (1876), p.164
  189. (in German) Kosmos: Entwurf einer physischen Weltbeschreibung, Volume 4, Alexander von Humboldt, J. G. Cotta (1858), p.195
  190. "Outlines of Astronomy", John F. W. Herschel, Longman & Brown (1849), ch. 'Parallax of Stars', p.551 (section 851)
  191. The North American Review, "The Observatory at Pulkowa", FGW Struve, Volume 69 Issue 144 (July 1849)
  192. The Sidereal Messenger, "Of the Precession of the Equinoxes, Nutation of the Earth's Axis, And Aberration of Light", Vol.1, No.12, April 1847: 'Derby, Bradley, & Co.' Cincinnati
  193. SEDS, "Friedrich Wilhelm Bessel (July 22, 1784 – March 17, 1846)" Archived February 4, 2012, at the Wayback Machine . Retrieved 11 November 2009.
  194. Harper's New Monthly Magazine, "Some Talks of an Astronomer", Simon Newcomb, Volume 0049 Issue 294 (November 1874), pp.827 (accessed 2009-Nov-11)
  195. Jensen, Joseph B.; Tonry, John L.; Barris, Brian J.; Thompson, Rodger I.; Liu, Michael C.; Rieke, Marcia J.; Ajhar, Edward A.; Blakeslee, John P. (February 2003). "Measuring Distances and Probing the Unresolved Stellar Populations of Galaxies Using Infrared Surface Brightness Fluctuations". Astrophysical Journal. 583 (2): 712–726. arXiv:astro-ph/0210129. Bibcode:2003ApJ...583..712J. doi:10.1086/345430. S2CID 551714.
  196. Kepple, George Robert; Glen W. Sanner (1998). The Night Sky Observer's Guide, Volume 1. Willmann-Bell, Inc. p. 18. ISBN 978-0-943396-58-3.
  197. Fodera-Serio, G.; Indorato, L.; Nastasi, P. (February 1985). "Hodierna's Observations of Nebulae and his Cosmology". Journal for the History of Astronomy. 16 (1): 1–36. Bibcode:1985JHA....16....1F. doi:10.1177/002182868501600101.
  198. G. Gavazzi; A. Boselli; M. Scodeggio; D. Pierini & E. Belsole (1999). "The 3D structure of the Virgo cluster from H-band Fundamental Plane and Tully-Fisher distance determinations". Monthly Notices of the Royal Astronomical Society. 304 (3): 595–610. arXiv:astro-ph/9812275. Bibcode:1999MNRAS.304..595G. doi:10.1046/j.1365-8711.1999.02350.x. S2CID 41700753.
  199. Burnham, Robert Jr (1978). Burnham's Celestial Handbook: Volume Three, Pavo Through Vulpecula. Dover. pp. 2086–2088. ISBN 978-0-486-23673-5.
  200. "The OBEY Survey – NGC 584".
  201. "Distance Results for NGC 0001". NASA/IPAC Extragalactic Database. Retrieved 2010-05-03.
  202. Falla, D. F.; Evans, A. (1972). "On the Mass and Distance of the Quasi-Stellar Object 3C 273". Astrophysics and Space Science. 15 (3): 395. Bibcode:1972Ap&SS..15..395F. doi:10.1007/BF00649767. S2CID 124870214.
  203. Variable Star Of The Season Archived January 23, 2009, at the Wayback Machine
  204. Minkowski, R. (1960). "A New Distant Cluster of Galaxies". Astrophysical Journal. 132: 908. Bibcode:1960ApJ...132..908M. doi:10.1086/146994.
  205. "Exploding star is oldest object seen in universe". 2009-04-29. Retrieved 2010-10-22.
  206. Krimm, H.; et al. (2009). "GRB 090423: Swift detection of a burst". GCN Circulars. 9198: 1. Bibcode:2009GCN..9198....1K.