Magnus effect

The Magnus effect is an observable phenomenon that is commonly associated with a spinning object moving through a fluid. The path of the spinning object is deflected in a manner that is not present when the object is not spinning. The deflection can be explained by the difference in pressure of the fluid on opposite sides of the spinning object. The Magnus effect is dependent on the speed of rotation.

The Magnus effect, depicted with a backspinning cylinder or ball in an airstream. The arrow represents the resulting lifting force. The curly flow lines represent a turbulent wake. The airflow has been deflected in the direction of spin.
Magnus effect: downwards force on a topspinning cylinder
Magnus effect. While the pipe rotates, as a consequence of fluid friction, it pulls air around it. This makes the air flow with higher speed on one side of the pipe and with lower speed on the other side.
Magnus effect in a 2D liquid of hard disks

The most readily observable case of the Magnus effect is when a spinning sphere (or cylinder) curves away from the arc it would follow if it were not spinning. It is often used by association football and volleyball players, baseball pitchers, and cricket bowlers. Consequently, the phenomenon is important in the study of the physics of many ball sports. It is also an important factor in the study of the effects of spinning on guided missiles—and has some engineering uses, for instance in the design of rotor ships and Flettner aeroplanes.

Topspin in ball games is defined as spin about a horizontal axis perpendicular to the direction of travel that moves the top surface of the ball in the direction of travel. Under the Magnus effect, topspin produces a downward swerve of a moving ball, greater than would be produced by gravity alone. Backspin produces an upwards force that prolongs the flight of a moving ball.[1] Likewise side-spin causes swerve to either side as seen during some baseball pitches, e.g. slider.[2] The overall behaviour is similar to that around an aerofoil (see lift force), but with a circulation generated by mechanical rotation rather than shape of the foil.[3]

The Magnus effect is named after Heinrich Gustav Magnus, the German physicist who investigated it. The force on a rotating cylinder is known as Kutta–Joukowski lift,[4] after Martin Kutta and Nikolai Zhukovsky (or Joukowski), who first analyzed the effect.

Share this article:

This article uses material from the Wikipedia article Magnus effect, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.