# Newton's law of universal gravitation

**Newton's law of universal gravitation** is usually stated as that every particle attracts every other particle in the universe with a force that is proportional to the product of their masses and inversely proportional to the square of the distance between their centers.[note 1] The publication of the law has become known as the "first great unification", as it marked the unification of the previously described phenomena of gravity on Earth with known astronomical behaviors.[1][2][3]

Part of a series on |

Classical mechanics |
---|

This is a general physical law derived from empirical observations by what Isaac Newton called inductive reasoning.[4] It is a part of classical mechanics and was formulated in Newton's work *Philosophiæ Naturalis Principia Mathematica* ("the *Principia*"), first published on 5 July 1687. When Newton presented Book 1 of the unpublished text in April 1686 to the Royal Society, Robert Hooke made a claim that Newton had obtained the inverse square law from him.

In today's language, the law states that every point mass attracts every other point mass by a force acting along the line intersecting the two points. The force is proportional to the product of the two masses, and inversely proportional to the square of the distance between them.[5]

The equation for universal gravitation thus takes the form:

where *F* is the gravitational force acting between two objects, *m _{1}* and

*m*are the masses of the objects,

_{2}*r*is the distance between the centers of their masses, and

*G*is the gravitational constant.

The first test of Newton's law of gravitation between masses in the laboratory was the Cavendish experiment conducted by the British scientist Henry Cavendish in 1798.[6] It took place 111 years after the publication of Newton's *Principia* and approximately 71 years after his death.

Newton's law of gravitation resembles Coulomb's law of electrical forces, which is used to calculate the magnitude of the electrical force arising between two charged bodies. Both are inverse-square laws, where force is inversely proportional to the square of the distance between the bodies. Coulomb's law has the product of two charges in place of the product of the masses, and the Coulomb constant in place of the gravitational constant.

Newton's law has later been superseded by Albert Einstein's theory of general relativity, but the universality of gravitational constant is intact and the law still continues to be used as an excellent approximation of the effects of gravity in most applications. Relativity is required only when there is a need for extreme accuracy, or when dealing with very strong gravitational fields, such as those found near extremely massive and dense objects, or at small distances (such as Mercury's orbit around the Sun).