Orders_of_magnitude_(power)

Orders of magnitude (power)

Orders of magnitude (power)

Units of measure for Watts (W) with examples


This page lists examples of the power in watts produced by various sources of energy. They are grouped by orders of magnitude from small to large.

Below 1 W

More information Factor (watts), SI prefix ...

1 to 102 W

More information Factor (watts), SI prefix ...

103 to 108 W

103 kilo- (kW) 1–3 × 103 W tech: heat output of a domestic electric kettle
1.1 × 103 W tech: power of a microwave oven
1.366 × 103 W astro: power per square metre received from the Sun at the Earth's orbit
1.5 × 103 W tech: legal limit of power output of an amateur radio station in the United States
up to 2 × 103 W biomed: approximate short-time power output of sprinting professional cyclists and weightlifters doing snatch lifts
2.4 × 103 W geo: average power consumption per person worldwide in 2008 (21,283 kWh/year)
3.3–6.6 × 103 W eco: average photosynthetic power output per square kilometer of ocean[23]
3.6 × 103 W tech: synchrotron radiation power lost per ring in the Large Hadron Collider at 7000 GeV[6]
104 1–5 × 104 W tech: nominal power of clear channel AM[24]
1.00 × 104 W eco: average power consumption per person in the United States in 2008 (87,216 kWh/year)
1.4 × 104 W tech: average power consumption of an electric car on EPA's Highway test schedule[25][26]
1.45 × 104 W astro: power per square metre received from the Sun at Mercury's orbit at perihelion
1.6–3.2 × 104 W eco: average photosynthetic power output per square kilometer of land[23]
3 × 104 W tech: power generated by the four motors of GEN H-4 one-man helicopter
4–20 × 104 W tech: approximate range of peak power output of typical automobiles (50-250 hp)
5–10 × 104 W tech: highest allowed ERP for an FM band radio station in the United States[27]
105 1.67 × 105 W tech: power consumption of UNIVAC 1 computer
2.5–8 × 105 W tech: approximate range of power output of 'supercars' (300 to 1000 hp)
4.5 × 105 W tech: approximate maximum power output of a large 18-wheeler truck engine (600 hp)
106 mega- (MW) 1.3 × 106 W tech: power output of P-51 Mustang fighter aircraft
2.0 × 106 W tech: peak power output of GE's standard wind turbine
2.4 × 106 W tech: peak power output of a Princess Coronation class steam locomotive (approx 3.3K EDHP on test) (1937)
2.5 × 106 W biomed: peak power output of a blue whale
3 × 106 W tech: mechanical power output of a diesel locomotive
4.4 × 106 W tech: total mechanical power output of Titanic's coal-fueled steam engines[28]
7 × 106 W tech: mechanical power output of a Top Fuel dragster
8 × 106 W tech: peak power output of the MHI Vestas V164, the world's largest offshore wind turbine
107 1 × 107 W tech: highest ERP allowed for an UHF television station
1.03 × 107 W geo: electrical power output of Togo
1.22 × 107 W tech: approx power available to a Eurostar 20-carriage train
1.6 × 107 W tech: rate at which a typical gasoline pump transfers chemical energy to a vehicle
2.6 × 107 W tech: peak power output of the reactor of a Los Angeles-class nuclear submarine
7.5 × 107 W tech: maximum power output of one GE90 jet engine as installed on the Boeing 777
108 1.4 × 108 W tech: average power consumption of a Boeing 747 passenger aircraft
1.9 × 108 W tech: peak power output of a Nimitz-class aircraft carrier
5 × 108 W tech: typical power output of a Fossil fuel power station
9 × 108 W tech: electric power output of a CANDU nuclear reactor
9.59 × 108 W geo: average electrical power consumption of Zimbabwe in 1998
9.86 × 108 W astro: approximate solar power received by the dwarf planet Sedna at its aphelion (937 AU)

The productive capacity of electrical generators operated by utility companies is often measured in MW. Few things can sustain the transfer or consumption of energy on this scale; some of these events or entities include: lightning strikes, naval craft (such as aircraft carriers and submarines), engineering hardware, and some scientific research equipment (such as supercolliders and large lasers).

For reference, about 10,000 100-watt lightbulbs or 5,000 computer systems would be needed to draw 1 MW. Also, 1 MW is approximately 1360 horsepower. Modern high-power diesel-electric locomotives typically have a peak power of 3–5 MW, while a typical modern nuclear power plant produces on the order of 500–2000 MW peak output.

109 to 1014 W

109 giga- (GW)

1.3 × 109

tech: electric power output of Manitoba Hydro Limestone hydroelectric generating station
2.074 × 109 tech: peak power generation of Hoover Dam
2.1 × 109 tech: peak power generation of Aswan Dam
3.4 × 109 tech: estimated power consumption of the Bitcoin network in 2017[29]
4.116 × 109 tech: installed capacity of Kendal Power Station, the world's largest coal-fired power plant.
1010 1.17 × 1010 tech: power produced by the Space Shuttle in liftoff configuration (9.875 GW from the SRBs; 1.9875 GW from the SSMEs.)[30]
1.26 × 1010 tech: electrical power generation of the Itaipu Dam
1.27 × 1010 geo: average electrical power consumption of Norway in 1998
2.25 × 1010 tech: peak electrical power generation of the Three Gorges Dam, the power plant with the world's largest generating capacity of any type.[31]
2.24 × 1010 tech: peak power of all German solar panels (at noon on a cloudless day), researched by the Fraunhofer ISE research institute in 2014[32]
5.027 × 1010 tech: peak electrical power consumption of California Independent System Operator users between 1998 and 2018, recorded at 14:44 Pacific Time, July 24, 2006.[33]
5.22 × 1010 tech: China total nuclear power capacity as of 2022.[34]
5.5 × 1010 tech: peak daily electrical power consumption of Great Britain in November 2008.[35]
7.31 × 1010 tech: total installed power capacity of Turkey on December 31, 2015.[36]
9.55 × 1010 tech: United States total nuclear power capacity as of 2022.[34]
1011 1.016 × 1011 tech: peak electrical power consumption of France (February 8, 2012 at 7:00 pm)
1.12 × 1011 tech: United States total installed solar capacity as of 2022.[37]
1.41 × 1011 tech: United States total wind turbine capacity in 2022.[37]
1.66 × 1011 tech: average power consumption of the first stage of the Saturn V rocket.[38][39]
3.66 × 1011 tech: China total wind turbine capacity in 2022.[37]
3.92 × 1011 tech: China total installed solar capacity as of 2022.[37]
7 × 1011 biomed: humankind basal metabolic rate as of 2013 (7 billion people).
8.99 × 1011 tech: worldwide wind turbine capacity at end of 2022.[37]
1012 tera- (TW) 1.062 × 1012 tech: worldwide installed solar capacity at end of 2022.[37]
2 × 1012 astro: approximate power generated between the surfaces of Jupiter and its moon Io due to Jupiter's tremendous magnetic field.[40]
3.34 × 1012 geo: average total (gas, electricity, etc.) power consumption of the US in 2005[41]
1013 2.04 × 1013 tech: average rate of power consumption of humanity over 2022.[42]
4.7 × 1013 geo: average total heat flow at Earth's surface which originates from its interior.[43] Main sources are roughly equal amounts of radioactive decay and residual heat from Earth's formation.[44]
5–20 × 1013 weather: rate of heat energy release by a hurricane[citation needed]
1014 1.4 × 1014 eco: global net primary production (= biomass production) via photosynthesis[45]
2.9 × 1014 tech: the power the Z machine reaches in 1 billionth of a second when it is fired[citation needed]
3 × 1014 weather: Hurricane Katrina's rate of release of latent heat energy into the air.[46]
3 × 1014 tech: power reached by the extremely high-power Hercules laser from the University of Michigan.[citation needed]
4.6 × 1014 geo: estimated rate of net global heating, evaluated as Earth's energy imbalance, from 2005 to 2019.[47][48] The rate of ocean heat uptake approximately doubled over this period.[49]

1015 to 1026 W

1015 peta- ~2 × 1.00 × 1015 W tech: Omega EP laser power at the Laboratory for Laser Energetics. There are two separate beams that are combined.
1.4 × 1015 W geo: estimated heat flux transported by the Gulf Stream.
5 × 1015 W geo: estimated net heat flux transported from Earth's equator and towards each pole. Value is a latitudinal maximum arising near 40° in each hemisphere.[50][51]
7 × 1015 W tech: worlds most powerful laser in operation (claimed on February 7, 2019, by Extreme Light Infrastructure – Nuclear Physics (ELI-NP) at Magurele, Romania)[52]
1016 1.03 × 1016 W tech: world's most powerful laser pulses (claimed on October 24, 2017, by SULF of Shanghai Institute of Optics and Fine Mechanics).[53]
1–10 × 1016 W tech: estimated total power output of a Type-I civilization on the Kardashev scale.[54]
1017 1.73 × 1017 W astro: total power received by Earth from the Sun[55]
2 × 1017 W tech: planned peak power of Extreme Light Infrastructure laser[56]
4.6 × 1017 W astro: total internal heat flux of Jupiter[57]
1018 exa- (EW) In a keynote presentation, NIF & Photon Science Chief Technology Officer Chris Barty described the "Nexawatt" Laser, an exawatt (1,000-petawatt) laser concept based on NIF technologies, on April 13 at the SPIE Optics + Optoelectronics 2015 Conference in Prague. Barty also gave an invited talk on "Laser-Based Nuclear Photonics" at the SPIE meeting.[58]
1021 zetta- (ZW)
1022 5.31 × 1022 W astro: approximate luminosity of 2MASS J0523−1403, the least luminous star known.[59]
1023 4.08 × 1023 W astro: approximate luminosity of Wolf 359
1024 yotta- (YW) 5.3 × 1024 W tech: estimated power of the Tsar Bomba hydrogen bomb detonation[60]
9.8 × 1024 W astro: approximate luminosity of Sirius b, Sirius's white dwarf companion.[61][62]
1026 1 × 1026 W tech: power generating capacity of a Type-II civilization on the Kardashev scale.[54]
3.828 × 1026 W astro: luminosity of the Sun[63]
7.67 × 1026 W astro: approximate luminosity of Alpha Centauri, the closest (triple) star system.[64]
1027 9.77 × 1027 W astro: approximate luminosity of Sirius, the visibly brightest star as viewed from Earth.[65]
1028 6.51 × 1028 W astro: approximate luminosity of Arcturus, a solar-mass red giant[66]

Over 1027 W

1030 quetta- (QW) 1.99 × 1030 W astro: peak luminosity of the Sun in its thermally-pulsing, late AGB phase (≈5200x present)[67]
4.1 × 1030 W astro: approximate luminosity of Canopus[68]
1031 2.53 × 1031 W astro: approximate luminosity of the Beta Centauri triple star system[69]
1032 1.23 × 1032 W astro: approximate luminosity of Deneb
1033 Quetkilo- (QkW) 1.79 × 1033 W astro: approximate luminosity of R136a1[70]
2.1 × 1033 W astro: approximate luminosity of the Eta Carinae system[71]
1034 4 × 1034 W tech: approximate power used by a type III civilization in the Kardashev scale.[54]
1036 Quetmega- (QMW) 5.7 × 1036 W astro: approximate luminosity of the Milky Way galaxy[72][73]
1037 4 × 1037 W astro: approximate internal luminosity of the Sun for a few seconds as it undergoes a helium flash.[74][75]
1038 2.2 × 1038 W astro: approximate luminosity of the extremely luminous supernova ASASSN-15lh[76][77]
1039 Quetgiga- (QGW) 1 × 1039 W astro: average luminosity of a quasar
1.57 × 1039 W astro: approximate luminosity of 3C273, the brightest quasar seen from Earth[78]
1040 5 × 1040 W astro: approximate peak luminosity of the energetic fast blue optical transient CSS161010[79]
1041 1 × 1041 W astro: approximate luminosity of the most luminous quasars in our universe, e.g., APM 08279+5255 and HS 1946+7658.[80]
1042 Quettera- (QTW) 1.7 × 1042 W astro: approximate luminosity of the Laniakea Supercluster[81][82]
3 × 1042 W astro: approximate luminosity of an average gamma-ray burst[83]
1043 2.2 × 1043 W astro: average stellar luminosity in one cubic gigalight-year of space
1045 Quetpeta- (QPW)
1046 1 × 1046 W astro: record for maximum beaming-corrected intrinsic luminosity ever achieved by a gamma-ray burst[84]
1047 7.519 × 1047 W phys: Hawking radiation luminosity of a Planck mass black hole[85]
1048 Quetexa- (QEW) 9.5 × 1048 W astro: luminosity of the entire Observable universe[86] ≈ 24.6 billion trillion solar luminosity.
1049 3.6 × 1049 W astro: peak gravitational wave radiative power of GW150914, the merger event of two distant stellar-mass black holes. It is attributed to the first observation of gravitational waves.[87]
1052 3.63 × 1052 W phys: the unit of power as expressed under the Planck units,[note 1] at which the definition of power under modern conceptualizations of physics breaks down. Equivalent to one Planck mass-energy per Planck time.

See also

Notes


References

  1. Ge, Xue; Zhao, Bi-Xuan; Bian, Wei-Hao; Frederick, Green Richard (March 2019). "The Blueshift of the C iv Broad Emission Line in QSOs". The Astronomical Journal. 157 (4): 148. arXiv:1903.08830. Bibcode:2019AJ....157..148G. doi:10.3847/1538-3881/ab0956. ISSN 1538-3881.
  2. Calculated using M_BH = 4.07e+10 M_sol.
  3. "Nanoelectromechanical systems face the future". Physics World. February 1, 2001.
  4. Warner, Jon S; Johnston, Roger G (December 2003). "GPS Spoofing Countermeasures". Archived from the original on February 7, 2012. (This article was originally published as Los Alamos research paper LAUR-03-6163)
  5. CERN. Beam Parameters and Definitions". Table 2.2. Retrieved September 13, 2008
  6. "HubbleSite: Black Holes: Gravity's Relentless Pull interactive: Encyclopedia". January 6, 2024. Archived from the original on January 6, 2024. Retrieved January 6, 2024.
  7. Fermi estimate: Mass of observable universe / mass of Milky Way ≈ 1e+12. Number of stars in the Milky Way ≈ 1e+11. Proportion of stars that evolve into a black hole ≈ 1e-3. Hawking radiation power of a 10 Solar mass black hole: ≈ 1e-30 W. 12 + 11 - 3 - 30 = 23 - 30 = –10.
  8. Nath, Pran; Perez, Pavel Fileviez (April 2007). "Proton stability in grand unified theories, in strings, and in branes". Physics Reports. 441 (5–6): 191–317. arXiv:hep-ph/0601023. Bibcode:2007PhR...441..191N. doi:10.1016/j.physrep.2007.02.010. S2CID 119542637.
  9. "EETimes - Driving LED lighting in mobile phones and PDAs". EETimes. June 12, 2008. Retrieved December 2, 2021.
  10. "Solar irradiance (W/m2), Bulk Parameters, Neptune Fact Sheet, NASA NSSDCA". NASA GSFC. December 23, 2021. Retrieved June 8, 2022.
  11. Glenn Elert. "Power of a Human Brain - The Physics Factbook". Hypertextbook.com. Retrieved September 13, 2018.
  12. Maury Tiernan (November 1997). "The Comfort Zone" (PDF). Geary Pacific Corporation. Archived from the original (PDF) on December 17, 2008. Retrieved March 17, 2008.
  13. Hagedoorn, Hilbert (November 15, 2022). "GeForce RTX 4080 Founder edition review - Hardware setup | Power consumption". Guru3D.com. Guru3D. Retrieved March 3, 2023.
  14. DOE Fundamentals Handbook, Classical Physics. USDOE. 1992. pp. CP–05, Page 9. OSTI 10170060.
  15. Ball, D; Burrows C; Sargeant AJ (March 1999). "Human power output during repeated sprint cycle exercise: the influence of thermal stress". Eur J Appl Physiol Occup Physiol. 79 (4): 360–6. doi:10.1007/s004210050521. PMID 10090637. S2CID 9825954.
  16. "Chapter 1 - Biological energy production". Fao.org. Retrieved September 13, 2018.
  17. "Detailed Fuel Economy Test Information". EPA. Retrieved February 17, 2019.
  18. "Fuel Economy Data". EPA. Retrieved February 17, 2019.
  19. "The Titanic's engine was a pretty marvelous innovation". The Manual. January 8, 2023. Retrieved January 6, 2024.
  20. Alex Hern. "Bitcoin mining consumes more electricity a year than Ireland | Technology". The Guardian. Retrieved September 13, 2018.
  21. Glenn Elert (February 11, 2013). "Power of a Space Shuttle - The Physics Factbook". Hypertextbook.com. Retrieved September 13, 2018.
  22. "The 22.5GW Power Plant - What You Should Know About Three Gorges, China". January 6, 2024. Archived from the original on January 6, 2024. Retrieved January 6, 2024.
  23. Rachael Black (June 23, 2014). "Germany can now produce half its energy from solar | Richard Dawkins Foundation". Richarddawkins.net. Retrieved September 13, 2018.
  24. "PRIS - Miscellaneous reports - Nuclear Share". January 6, 2024. Archived from the original on January 6, 2024. Retrieved January 6, 2024.
  25. "National Grid electricity consumption statistics". Archived from the original on December 5, 2008. Retrieved November 27, 2008.
  26. "Yearly electricity data". Ember. January 4, 2024. Retrieved January 6, 2024.
  27. Annamalai, Kalyan; Ishwar Kanwar Puri (2006). Combustion Science and Engineering. CRC Press. p. 851. ISBN 978-0-8493-2071-2.
  28. "File:Saturn v schematic.jpg - Wikimedia Commons". Commons.wikimedia.org. Retrieved September 13, 2018.
  29. Archived May 29, 2009, at the Wayback Machine – Nasa: Listening to shortwave radio signals from Jupiter
  30. Ritchie, Hannah; Rosado, Pablo; Roser, Max (January 4, 2024). "Energy Production and Consumption". Our World in Data.
  31. Davies, J. H.; Davies, D. R. (February 22, 2010). "Earth's surface heat flux". Solid Earth. 1 (1): 5–24. Bibcode:2010SolE....1....5D. doi:10.5194/se-1-5-2010. ISSN 1869-9529.
  32. Donald L. Turcotte; Gerald Schubert (March 25, 2002). Geodynamics. Cambridge University Press. ISBN 978-0-521-66624-4.
  33. "Earth's energy flow - Energy Education". energyeducation.ca. Retrieved August 5, 2019.
  34. "ATMO336 - Fall 2005". www.atmo.arizona.edu. Retrieved November 18, 2020.
  35. Trenberth, Kevin E.; Cheng, Lijing (July 4, 2022). "A perspective on climate change from Earth's energy imbalance". Environmental Research: Climate. 1 (1): 3001. doi:10.1088/2752-5295/ac6f74.
  36. von Schuckman, K.; Cheng, L.; Palmer, M. D.; Hansen, J.; et al. (September 7, 2020). "Heat stored in the Earth system: where does the energy go?". Earth System Science Data. 12 (3): 2013–2041. Bibcode:2020ESSD...12.2013V. doi:10.5194/essd-12-2013-2020. hdl:20.500.11850/443809.
  37. Loeb, Norman G.; Johnson, Gregory C.; Thorsen, Tyler J.; Lyman, John M.; et al. (June 15, 2021). "Satellite and Ocean Data Reveal Marked Increase in Earth's Heating Rate". Geophysical Research Letters. 48 (13). Bibcode:2021GeoRL..4893047L. doi:10.1029/2021GL093047. S2CID 236233508.
  38. Trenberth, Kevin E.; Caron, Julie E. (August 15, 2001). "Estimates of Meridional Atmosphere and Ocean Heat Transports". Journal of Climate. 14 (16): 3433–3443. Bibcode:2001JCli...14.3433T. doi:10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2.
  39. "Super Laser Sets Another Record For Peak Power". Shanghai Municipal Government. October 26, 2017.
  40. Lemarchand, Guillermo A. "Detectability of Extraterrestrial Technological Activities". coseti.org. Columbus Optical SETI Observatory. Archived from the original on March 18, 2019. Retrieved October 23, 2004.
  41. Chandler, David L. (October 26, 2011). "Shining brightly". news.mit.edu. Massachusetts Institute of Technology. Retrieved January 31, 2023.
  42. Li, Liming; Jiang, X.; West, R. A.; Gierasch, P. J.; Perez-Hoyos, S.; Sanchez-Lavega, A.; Fletcher, L. N.; Fortney, J. J.; Knowles, B.; Porco, C. C.; Baines, K. H.; Fry, P. M.; Mallama, A.; Achterberg, R. K.; Simon, A. A. (September 13, 2018). "Less absorbed solar energy and more internal heat for Jupiter". Nature Communications. 9 (1): 3709. Bibcode:2018NatCo...9.3709L. doi:10.1038/s41467-018-06107-2. ISSN 2041-1723. PMC 6137063. PMID 30213944. S2CID 52274616.
  43. "Papers and Presentations". Lasers.llnl.gov. January 28, 2016. Retrieved September 13, 2018.
  44. Filippazzo, Joseph C.; Rice, Emily L.; Faherty, Jacqueline; Cruz, Kelle L.; Van Gordon, Mollie M.; Looper, Dagny L. (September 10, 2015). "Fundamental Parameters and Spectral Energy Distributions of Young and Field Age Objects with Masses Spanning the Stellar to Planetary Regime". The Astrophysical Journal. 810 (2): 158. arXiv:1508.01767. Bibcode:2015ApJ...810..158F. doi:10.1088/0004-637X/810/2/158. ISSN 1538-4357. S2CID 89611607.
  45. Matt Ford (September 15, 2006). "The biggest explosion in our solar system". Ars Technica. Retrieved September 13, 2018.
  46. "Sirius Data". January 6, 2024. Archived from the original on January 6, 2024. Retrieved January 6, 2024.
  47. Calculated: L = Stefan-Boltzmann constant × (Sirius b surface temperature)^4 × 4pi × (radius)^2 = 5.67e-8 × 25200^4 × 4pi × (5.84e+6)^2 = 9.8e+24 W.
  48. "The IAU Strategic Plan 2010-2020: Astronomy for Development" (PDF). Archived from the original (PDF) on January 6, 2024. Retrieved January 6, 2024.
  49. Akeson, Rachel; Beichman, Charles; Kervella, Pierre; Fomalont, Edward; Benedict, G. Fritz (July 1, 2021). "Precision Millimeter Astrometry of the $\alpha$ Centauri AB System". The Astronomical Journal. 162 (1): 14. arXiv:2104.10086. Bibcode:2021AJ....162...14A. doi:10.3847/1538-3881/abfaff. ISSN 0004-6256.
  50. Liebert, James; Young, Patrick A.; Arnett, David; Holberg, J. B.; Williams, Kurtis A. (September 1, 2005). "The Age and Progenitor Mass of Sirius B". The Astrophysical Journal. 630 (1): L69–L72. arXiv:astro-ph/0507523. Bibcode:2005ApJ...630L..69L. doi:10.1086/462419. ISSN 0004-637X. S2CID 8792889.
  51. Schroder, Klaus-Peter; Cuntz, Manfred (April 2007). "A critical test of empirical mass loss formulae applied to individual giants and supergiants". Astronomy & Astrophysics. 465 (2): 593–601. arXiv:astro-ph/0702172. Bibcode:2007A&A...465..593S. doi:10.1051/0004-6361:20066633. ISSN 0004-6361. S2CID 55901104.
  52. Sackmann, I. -Juliana; Boothroyd, Arnold I.; Kraemer, Kathleen E. (November 1, 1993). "Our Sun. III. Present and Future". The Astrophysical Journal. 418: 457. Bibcode:1993ApJ...418..457S. doi:10.1086/173407. ISSN 0004-637X.
  53. Cruzalèbes, P.; Jorissen, A.; Rabbia, Y.; Sacuto, S.; Chiavassa, A.; Pasquato, E.; Plez, B.; Eriksson, K.; Spang, A.; Chesneau, O. (September 1, 2013). "Fundamental parameters of 16 late-type stars derived from their angular diameter measured with VLTI/AMBER". Monthly Notices of the Royal Astronomical Society. 434 (1): 437–450. arXiv:1306.3288. doi:10.1093/mnras/stt1037. ISSN 0035-8711.
  54. Shultz, M. E.; Wade, G. A.; Rivinius, Th; Alecian, E.; Neiner, C.; Petit, V.; Wisniewski, J. P.; MiMeS, the; Collaborations, BinaMIcS (May 11, 2019). "The Magnetic Early B-type Stars II: stellar atmospheric parameters in the era of Gaia". Monthly Notices of the Royal Astronomical Society. 485 (2): 1508–1527. arXiv:1902.02713. doi:10.1093/mnras/stz416. ISSN 0035-8711.
  55. Kalari, Venu M.; Horch, Elliott P.; Salinas, Ricardo; Vink, Jorick S.; Andersen, Morten; Bestenlehner, Joachim M.; Rubio, Monica (August 1, 2022). "Resolving the Core of R136 in the Optical". The Astrophysical Journal. 935 (2): 162. arXiv:2207.13078. Bibcode:2022ApJ...935..162K. doi:10.3847/1538-4357/ac8424. ISSN 0004-637X.
  56. Mehner, A.; de Wit, W.-J.; Asmus, D.; Morris, P. W.; Agliozzo, C.; Barlow, M. J.; Gull, T. R.; Hillier, D. J.; Weigelt, G. (October 2019). "Mid-infrared evolution of eta Car from 1968 to 2018". Astronomy & Astrophysics. 630: L6. arXiv:1908.09154. doi:10.1051/0004-6361/201936277. ISSN 0004-6361. S2CID 202149820.
  57. "Galaxy Properties". January 6, 2024. Archived from the original on January 6, 2024. Retrieved January 6, 2024.
  58. Calculated: 1.5e+10 L_sol * 3.828e+26 W/L_sol = 5.7e+36 W
  59. Deupree, Robert G.; Wallace, Richard K. (June 1, 1987). "The Core Helium Flash and Surface Abundance Anomalies". The Astrophysical Journal. 317: 724. Bibcode:1987ApJ...317..724D. doi:10.1086/165319. ISSN 0004-637X.
  60. Peak helium flash luminosity ≈ 100 billion times normal energy production.
  61. Dong, Subo; Shappee, B. J.; Prieto, J. L.; Jha, S. W.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Thompson, T. A.; Morrell, N.; Thompson, I. B.; Basu, U. (January 15, 2016). "ASASSN-15lh: A highly super-luminous supernova". Science. 351 (6270): 257–260. arXiv:1507.03010. Bibcode:2016Sci...351..257D. doi:10.1126/science.aac9613. hdl:10533/231850. ISSN 0036-8075. PMID 26816375. S2CID 31444274.
  62. "The Incomprehensible Power of a Supernova | RealClearScience". www.realclearscience.com. Retrieved November 22, 2020.
  63. Calculated as: Solar luminosity × 10^(0.4 × (Sun absolute magnitude - 3C 273 absolute magnitude)) = 3.828e+26 × 10^(0.4 × (4.83 - (- 26.73))) = 3.828e+26 × 4.1e+12 = 1.57e+39 W.
  64. Coppejans, D. L.; Margutti, R.; Terreran, G.; Nayana, A. J.; Coughlin, E. R.; Laskar, T.; Alexander, K. D.; Bietenholz, M.; Caprioli, D.; Chandra, P.; Drout, M. (2020). "A mildly relativistic outflow from the energetic, fast-rising blue optical transient CSS161010 in a dwarf galaxy". The Astrophysical Journal. 895 (1): L23. arXiv:2003.10503. Bibcode:2020ApJ...895L..23C. doi:10.3847/2041-8213/ab8cc7. S2CID 214623364.
  65. Riechers, Dominik A.; Walter, Fabian; Carilli, Christopher L.; Lewis, Geraint F. (2009). "Imaging the Molecular Gas in Az= 3.9 Quasar Host Galaxy at 0."3 Resolution: a Central, Sub-kiloparsec Scale Star Formation Reservoir in Apm 08279+5255". The Astrophysical Journal. 690 (1): 463–485. arXiv:0809.0754. Bibcode:2009ApJ...690..463R. doi:10.1088/0004-637X/690/1/463. ISSN 0004-637X. S2CID 13959993.
  66. Tully, R. Brent; Courtois, Helene; Hoffman, Yehuda; Pomarède, Daniel (September 4, 2014). "The Laniakea supercluster of galaxies". Nature. 513 (7516): 71–73. arXiv:1409.0880. Bibcode:2014Natur.513...71T. doi:10.1038/nature13674. ISSN 0028-0836. PMID 25186900. S2CID 205240232.
  67. Calculated. Estimated assuming Laniakea to be a sphere 160 Mpc in diameter, according to p.4 of cited paper: Observable universe luminosity × (Laniakea Supercluster diameter / Observable universe diameter)^3 = 9.466e+48 W × (160 Mpc / 28.5 Gpc)^3 = 1.675e+42 ≈ 1.7e+42 W.
  68. Guetta, Dafne; Piran, Tsvi; Waxman, Eli (2005). "The Luminosity and Angular Distributions of Long-Duration Gamma-Ray Bursts". The Astrophysical Journal. 619 (1): 412–419. arXiv:astro-ph/0311488. Bibcode:2005ApJ...619..412G. doi:10.1086/423125. ISSN 0004-637X. S2CID 14741044.
  69. Frederiks, D. D.; Hurley, K.; Svinkin, D. S.; Pal'shin, V. D.; Mangano, V.; et al. (2013). "The Ultraluminous GRB 110918A". The Astrophysical Journal. 779 (2): 151. arXiv:1311.5734. Bibcode:2013ApJ...779..151F. doi:10.1088/0004-637X/779/2/151. ISSN 0004-637X. S2CID 118398826.
  70. Calculated. Assuming isotropicity in composition and identical age since Big Bang within cosmological horizon, expressed as: Ordinary [baryonic] mass of observable universe / Ordinary mass of Milky Way × Luminosity of Milky Way. L_total = 1.5e+53 kg / 4.6e+10 M_sol * 1.5e+10 L_sol = 9.466e+48 W ≈ 9.5e+48 W.
  71. "GW150914: Factsheet" (PDF). www.ligo.org. Archived from the original (PDF) on January 6, 2024. Retrieved January 6, 2024.

Share this article:

This article uses material from the Wikipedia article Orders_of_magnitude_(power), and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.