# Partial fraction decomposition

In algebra, the **partial fraction decomposition** or **partial fraction expansion** of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.[1]

This article includes a list of general references, but it remains largely unverified because it lacks sufficient corresponding inline citations. (September 2012) |

The importance of the partial fraction decomposition lies in the fact that it provides algorithms for various computations with rational functions, including the explicit computation of antiderivatives,[2] Taylor series expansions, inverse Z-transforms, and inverse Laplace transforms. The concept was discovered independently in 1702 by both Johann Bernoulli and Gottfried Leibniz.[3]

In symbols, the *partial fraction decomposition* of a rational fraction of the form
where *f* and *g* are polynomials, is its expression as

where
*p*(*x*) is a polynomial, and, for each j,
the denominator *g*_{j} (*x*) is a power of an irreducible polynomial (that is not factorable into polynomials of positive degrees), and
the numerator *f*_{j} (*x*) is a polynomial of a smaller degree than the degree of this irreducible polynomial.

When explicit computation is involved, a coarser decomposition is often preferred, which consists of replacing "irreducible polynomial" by "square-free polynomial" in the description of the outcome. This allows replacing polynomial factorization by the much easier to compute square-free factorization. This is sufficient for most applications, and avoids introducing irrational coefficients when the coefficients of the input polynomials are integers or rational numbers.