Phosphate

In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthophosphoric acid H
3
PO
4
.

Phosphate
Aromatic ball and stick model of phosphate
Space-filling model of phosphate
Names
Systematic IUPAC name
Phosphate[1]
Identifiers
  • 14265-44-2 Y
3D model (JSmol)
3903772
ChEBI
ChemSpider
1997
MeSH Phosphates
UNII
  • InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 Y
    Key: NBIIXXVUZAFLBC-UHFFFAOYSA-K Y
  • [O-]P([O-])([O-])=O
  • [O-]P(=O)([O-])[O-]
  • O=P([O-])([O-])[O-]
  • [O-][P+]([O-])([O-])[O-]
Properties
PO3−
4
Molar mass 94.9714 g mol−1
Conjugate acid Monohydrogen phosphate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Y verify (what is YN ?)
Infobox references

The phosphate or orthophosphate ion [PO
4
]3−
is derived from phosphoric acid by the removal of three protons H+
. Removal of one or two protons gives the dihydrogen phosphate ion [H
2
PO
4
]
and the hydrogen phosphate ion [HPO
4
]2−
ion, respectively. These names are also used for salts of those anions, such as ammonium dihydrogen phosphate and trisodium phosphate.

In organic chemistry, phosphate or orthophosphate is an organophosphate, an ester of orthophosphoric acid of the form PO
4
RR′R″
where one or more hydrogen atoms are replaced by organic groups. An example is trimethyl phosphate, (CH
3
)
3
PO
4
. The term also refers to the trivalent functional group OP(O-)
3
in such esters.

Orthophosphates are especially important among the various phosphates because of their key roles in biochemistry, biogeochemistry, and ecology, and their economic importance for agriculture and industry.[2] The addition and removal of phosphate groups (phosphorylation and dephosphorylation) are key steps in cell metabolism.

Orthophosphates can condense to form pyrophosphates.