Portal:Mathematics

The Mathematics Portal

Mathematics is the study of representing and reasoning about abstract objects (such as numbers, points, spaces, sets, structures, and games). Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered. (Full article...)

  Featured articles are displayed here, which represent some of the best content on English Wikipedia.

Selected image – show another

three-dimensional rendering of a pink, translucent Klein bottle
A Klein bottle is an example of a closed surface (a two-dimensional manifold) that is non-orientable (no distinction between the "inside" and "outside"). This image is a representation of the object in everyday three-dimensional space, but a true Klein bottle is an object in four-dimensional space. When it is constructed in three-dimensions, the "inner neck" of the bottle curves outward and intersects the side; in four dimensions, there is no such self-intersection (the effect is similar to a two-dimensional representation of a cube, in which the edges seem to intersect each other between the corners, whereas no such intersection occurs in a true three-dimensional cube). Also, while any real, physical object would have a thickness to it, the surface of a true Klein bottle has no thickness. Thus in three dimensions there is an inside and outside in a colloquial sense: liquid forced through the opening on the right side of the object would collect at the bottom and be contained on the inside of the object. However, on the four-dimensional object there is no inside and outside in the way that a sphere has an inside and outside: an unbroken curve can be drawn from a point on the "outer" surface (say, the object's lowest point) to the right, past the "lip" to the "inside" of the narrow "neck", around to the "inner" surface of the "body" of the bottle, then around on the "outer" surface of the narrow "neck", up past the "seam" separating the inside and outside (which, as mentioned before, does not exist on the true 4-D object), then around on the "outer" surface of the body back to the starting point (see the light gray curve on this simplified diagram). In this regard, the Klein bottle is a higher-dimensional analog of the Möbius strip, a two-dimensional manifold that is non-orientable in ordinary 3-dimensional space. In fact, a Klein bottle can be constructed (conceptually) by "gluing" the edges of two Möbius strips together.

Good articles - load new batch

  These are Good articles, which meet a core set of high editorial standards.

Did you know – view different entries

Did you know...
  • ...that as of April 2010 only 35 even numbers have been found that are not the sum of two primes which are each in a Twin Primes pair? ref
  • ...the Piphilology record (memorizing digits of Pi) is 70000 as of Mar 2015?
  • ...that people are significantly slower to identify the parity of zero than other whole numbers, regardless of age, language spoken, or whether the symbol or word for zero is used?
  • ...that Auction theory was successfully used in 1994 to sell FCC airwave spectrum, in a financial application of game theory?
  • ...properties of Pascal's triangle have application in many fields of mathematics including combinatorics, algebra, calculus and geometry?
  • ...work in artificial intelligence makes use of swarm intelligence, which has foundations in the behavioral examples found in nature of ants, birds, bees, and fish among others?
  • ...that statistical properties dictated by Benford's Law are used in auditing of financial accounts as one means of detecting fraud?
Showing 7 items out of 75

More Did you know (auto generated)

Selected article – show another


Image credit: User:Melchoir

The real number denoted by the recurring decimal 0.999… is exactly equal to 1. In other words, "0.999…" represents the same number as the symbol "1". Various proofs of this identity have been formulated with varying rigour, preferred development of the real numbers, background assumptions, historical context, and target audience.

The equality has long been taught in textbooks, and in the last few decades, researchers of mathematics education have studied the reception of this equation among students, who often reject the equality. The students' reasoning is typically based on one of a few common erroneous intuitions about the real numbers; for example, a belief that each unique decimal expansion must correspond to a unique number, an expectation that infinitesimal quantities should exist, that arithmetic may be broken, an inability to understand limits or simply the belief that 0.999… should have a last 9. These ideas are false with respect to the real numbers, which can be proven by explicitly constructing the reals from the rational numbers, and such constructions can also prove that 0.999… = 1 directly. (Full article...)

View all selected articles

Subcategories


Full category tree. Select [►] to view subcategories.

Topics in mathematics

General Foundations Number theory Discrete mathematics
Algebra Analysis Geometry and topology Applied mathematics

Index of mathematics articles

ARTICLE INDEX:
MATHEMATICIANS:

WikiProjects

In other Wikimedia projects

The following Wikimedia Foundation sister projects provide more on this subject:

Wikibooks
Books

Commons
Media

Wikinews 
News

Wikiquote 
Quotations

Wikisource 
Texts

Wikiversity
Learning resources

Wiktionary 
Definitions

Wikidata 
Database


Share this article:

This article uses material from the Wikipedia article Portal:Mathematics, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.