# Preorder

In mathematics, especially in order theory, a preorder or quasiorder is a binary relation that is reflexive and transitive. Preorders are more general than equivalence relations and (non-strict) partial orders, both of which are special cases of a preorder: an antisymmetric (or skeletal) preorder is a partial order, and a symmetric preorder is an equivalence relation. Hasse diagram of the preorder x R y defined by x//4≤y//4 on the natural numbers. Due to the cycles, R is not anti-symmetric. If all numbers in a cycle are considered equivalent, a partial, even linear, order is obtained. See first example below.

The name preorder comes from the idea that preorders (that are not partial orders) are 'almost' (partial) orders, but not quite; they are neither necessarily antisymmetric nor asymmetric. Because a preorder is a binary relation, the symbol $\,\leq \,$ can be used as the notational device for the relation. However, because they are not necessarily antisymmetric, some of the ordinary intuition associated to the symbol $\,\leq \,$ may not apply. On the other hand, a preorder can be used, in a straightforward fashion, to define a partial order and an equivalence relation. Doing so, however, is not always useful or worthwhile, depending on the problem domain being studied.

In words, when $a\leq b,$ one may say that b covers a or that a precedes b, or that b reduces to a. Occasionally, the notation ← or → or $\,\lesssim \,$ is used instead of $\,\leq .$ To every preorder, there corresponds a directed graph, with elements of the set corresponding to vertices, and the order relation between pairs of elements corresponding to the directed edges between vertices. The converse is not true: most directed graphs are neither reflexive nor transitive. In general, the corresponding graphs may contain cycles. A preorder that is antisymmetric no longer has cycles; it is a partial order, and corresponds to a directed acyclic graph. A preorder that is symmetric is an equivalence relation; it can be thought of as having lost the direction markers on the edges of the graph. In general, a preorder's corresponding directed graph may have many disconnected components.