Prices_of_chemical_elements

Prices of chemical elements

Prices of chemical elements

Add article description


This is a list of prices of chemical elements. Listed here are mainly average market prices for bulk trade of commodities. Data on elements' abundance in Earth's crust is added for comparison.

As of 2020, the most expensive non-synthetic element by both mass and volume is rhodium. It is followed by caesium, iridium and palladium by mass and iridium, gold and platinum by volume. Carbon in the form of diamond can be more expensive than rhodium. Per-kilogram prices of some synthetic radioisotopes range to trillions of dollars. While the difficulty of obtaining macroscopic samples of synthetic elements in part explains their high value, there has been interest in converting base metals to gold (Chrysopoeia) since ancient times, but only deeper understanding of nuclear physics has allowed the actual production of a tiny amount of gold from other elements for research purposes as demonstrated by Glenn Seaborg.[1][2] However, both this and other routes of synthesis of precious metals via nuclear reactions is orders of magnitude removed from economic viability.

Chlorine, sulfur and carbon (as coal) are cheapest by mass. Hydrogen, nitrogen, oxygen and chlorine are cheapest by volume at atmospheric pressure.

When there is no public data on the element in its pure form, price of a compound is used, per mass of element contained. This implicitly puts the value of compounds' other constituents, and the cost of extraction of the element, at zero. For elements whose radiological properties are important, individual isotopes and isomers are listed. The price listing for radioisotopes is not exhaustive.

Chart

More information Z, Symbol ...

See also

Notes

  1. Density for 0 °C, 101.325 kPa.[3] For individual isotopes except deuterium, density of base element is used. Values in parentheses are theoretical predictions.
  2. Unless otherwise indicated, elements are primordial – they occur naturally, and not through decay.
  3. Price per volume for 0 °C, 101.325 kPa, pure element. For individual isotopes except deuterium, density of base element is used.
  4. Spot market price range on 3 February 2020.
  5. Market price on 5 February 2020
  6. Average price in November 2019. Data from China Petroleum and Chemical Industry Federation.
  7. Price average for entire year 2019.
  8. Market price on 4 February 2020
  9. This element is transient – it occurs only through decay (and in the case of plutonium, also in traces deposited from supernovae onto Earth).
  10. or earlier
  11. The values reported are present in 85th edition of CRC Handbook of Chemistry and Physics[44] (and possibly earlier) and remain unchanged to at least 97th edition.[45]
  12. Source lists prices of other rare earth elements (some of which are significantly different than the ones presented in table above):
    • lanthanum – 25 USD/kg
    • cerium – 30 USD/kg
    • praseodymium – 70 USD/kg
    • neodymium – 30 USD/kg
    • samarium – 80 USD/kg
    • europium – 1600 USD/kg
    • gadolinium – 78 USD/kg
    • terbium – 630 USD/kg
    • dysprosium – 120 USD/kg
    • holmium – 350 USD/kg
    • erbium – 180 USD/kg
    • thulium – 3000 USD/kg
    • ytterbium – 484 USD/kg
    • lutetium – 4000 USD/kg
    • yttrium – 96 USD/kg
  13. Fastmarkets Price[56] and Chart[57] Creator. Mid-market price from price table. Year of latest price data (2016) read from chart. Archived: table, chart (5, 7, 50, 1200 data points)
  14. Available from Oak Ridge National Laboratory as reported in CRC Handbook of Chemistry and Physics. Price does not include packing costs. The values reported are present in Handbook's 85th edition[44] (and possibly earlier) and remain unchanged to at least 97th edition.[45]
  15. This source also lists price of Americium-243 as 180 USD/mg, which is much higher than reported in CRC Handbook of Chemistry and Physics and used in this table.

References

  1. Aleklett, K.; Morrissey, D.; Loveland, W.; McGaughey, P.; Seaborg, G. (1981). "Energy dependence of 209Bi fragmentation in relativistic nuclear collisions". Physical Review C. 23 (3): 1044. Bibcode:1981PhRvC..23.1044A. doi:10.1103/PhysRevC.23.1044.
  2. Matthews, Robert (2 December 2001). "The Philosopher's Stone". The Daily Telegraph. Retrieved 2020-09-22.
  3. Antweiler, Werner. "Foreign Currency Units per 1 European Euro, 1999-2018" (PDF). PACIFIC Exchange Rate Service. University of British Columbia. Archived (PDF) from the original on 2020-03-28.
  4. Antweiler, Werner. "Database Retrieval System". PACIFIC Exchange Rate Service. University of British Columbia. Archived from the original on 2020-07-26.
  5. "USD / RMB". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  6. Values used for currency conversion:
    • Euro: 1999 – 1.0654 USD/EUR[4]
    • Renminbi: September 2013 – 0.16340 USD/CNY,[5] December 2017 – 0.15159 USD/CNY,[5] November 2019 – 0.14241 USD/CNY,[5] 3 February 2019 – 0.14273 USD/CNY[6]
  7. Dillich, Sara; Ramsden, Todd; Melaina, Marc (19 September 2012). Satyapal, Sunita (ed.). DOE Hydrogen and Fuel Cells Program Record #12024: Hydrogen Production Cost Using Low-Cost Natural Gas (PDF) (Report). United States Department of Energy. p. 5. Archived (PDF) from the original on 2017-02-15.
  8. "DEUTERIUM (D, 99.8%) (D2,99.6%+HD,0.4%)". Cambridge Isotope Laboratories. Archived from the original on 2020-04-16.
  9. "DEUTERIUM OXIDE (D, 99%)". Cambridge Isotope Laboratories. Archived from the original on 2019-06-16.
  10. "Mineral Commodity Summaries 2019". Mineral Commodity Summaries (Report). United States Geological Survey. 2019. doi:10.3133/70202434. ISBN 978-1-4113-4283-5. Archived from the original on 2020-02-02.
  11. "Lithium Metal". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  12. "Strategic metals prices in February 2020". Institute of Rare Earths and Metals. 5 February 2020. Archived from the original on 2020-02-05.
  13. "Coal prices and outlook". Energy Explained. U.S. Energy Information Administration. 12 November 2019. Archived from the original on 2020-03-30.
  14. Preismonitor (PDF) (Report) (in German). Federal Institute for Geosciences and Natural Resources. 22 January 2020. Archived (PDF) from the original on 2020-01-25.
  15. Olson, Donald W. (January 2020). Diamond, Industrial. Minerals Yearbook 2016 (Report). Vol. I. United States Geological Survey. p. 21.3. doi:10.3133/mybvi. Archived from the original on 2020-03-31.
  16. Salerno, Louis J.; Gaby, J.; Johnson, R.; Kittel, Peter; Marquardt, Eric D. (2002). "Terrestrial Applications of Zero-Boil-Off Cryogen Storage". In Ross, R. G. (ed.). Cryocoolers 11. Kluwer Academic Publishers. p. 810. doi:10.1007/0-306-47112-4_98. ISBN 978-0-306-46567-3.
  17. Fan, Karen (2007). Elert, Glenn (ed.). "Price of Liquid Nitrogen". The Physics Factbook. Archived from the original on 2019-07-23.
  18. In Cryocoolers 11,[22] cited in Hypertextbook[23]
  19. "Hydrofluoric Acid Market Remained Largely Stable This Week (Dec 1-7, 2017)". Echemi. 7 December 2017. Archived from the original on 2020-03-31.
  20. Häussinger, Peter; Glatthaar, Reinhard; Rhode, Wilhelm; Kick, Helmut; Benkmann, Christian; Weber, Josef; Wunschel, Hans-Jörg; Stenke, Viktor; Leicht, Edith; Stenger, Hermann (15 March 2001). "Noble Gases". In Elvers, Barbara; et al. (eds.). Ullmann's Encyclopedia of Industrial Chemistry. Vol. 24 (7th ed.). Wiley-VCH. sec. 9. doi:10.1002/14356007.a17_485. ISBN 978-3-527-32943-4.
  21. "Sodium". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  22. "Silicon Metal Yunnan (441#)". price.metal.com. Shanghai Metals Market. 6 February 2020. Archived from the original on 2020-02-06.
  23. "Liquid Chlorine Demands Goes Up with Substantial Price Hike". CnAgri. Beijing Orient Agribusiness Consultant. 15 October 2013. Archived from the original on 2020-01-14.
  24. Schmittinger, Peter; Florkiewicz, Thomas; Curlin, L. Calvert; Lüke, Benno; Scannell, Robert; Navin, Thomas; Zelfel, Erich; Bartsch, Rüdiger (15 January 2006). "Chlorine". In Elvers, Barbara; et al. (eds.). Ullmann's Encyclopedia of Industrial Chemistry (release 2008, 7th ed.). Wiley-VCH (published 2008). sec. 15. doi:10.1002/14356007.a06_399.pub2. ISBN 978-3-527-31965-7.
  25. "Potassium". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  26. "Calcium 98.5%". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  27. "Rare earth prices in February 2020". Institute of Rare Earths and Metals. 4 February 2020. Archived from the original on 2020-02-04.
  28. "Titanium Sponge". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  29. "Vanadium". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  30. "Tang Shan(Pig Iron)". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  31. "LME Copper Physical". London Metal Exchange. Archived from the original on 2019-06-23.
  32. "Germanium Ingot". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  33. "Arsenic Metal". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  34. "Current prices of strategic metals". Institute of Rare Earths and Metals. July 2019. Archived from the original on 2020-01-14.
  35. "Zirconium Sponge". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  36. "Niobium". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  37. Hammond, C. R. (2004). "The Elements". In Lide, David R. (ed.). Properties of the Elements and Inorganic Compounds (85th ed.). CRC Press. pp. 4-3–4-36. ISBN 978-0849304859. {{cite book}}: |work= ignored (help)
  38. Hammond, C. R. (2016). "The Elements". In Haynes, W. M.; Lide, David R.; Bruno, Thomas J. (eds.). Properties of the Elements and Inorganic Compounds (97th ed.). CRC Press. pp. 4-3–4-42. ISBN 978-1498754286. {{cite book}}: |work= ignored (help)
  39. National Research Council (2009). "6. Molybdenum-99/Technetium-99m Production Costs". Medical Isotope Production without Highly Enriched Uranium. Washington, D.C.: The National Academies Press. doi:10.17226/12569. ISBN 978-0-309-13039-4. PMID 25009932.
  40. "Ruthenium". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  41. Greenfield, Michael (2 August 2019). "Iodine prices hold firm although sellers' report higher deal values". Industrial Minerals. Archived from the original on 2019-11-19.
  42. McRae, Michele E. (December 2019). Barite. Minerals Yearbook 2016 (Report). Vol. I. United States Geological Survey. p. 9.3. doi:10.3133/mybvi.
  43. Kresse, Robert; Baudis, Ulrich; Jäger, Paul; Riechers, H. Hermann; Wagner, Heinz; Winkler, Jochen; Wolf, Hans Uwe (15 July 2007). "Barium and Barium Compounds". In Elvers, Barbara; et al. (eds.). Ullmann's Encyclopedia of Industrial Chemistry. Vol. 4 (7th ed.). Wiley-VCH (published 2011). sec. 1.7. doi:10.1002/14356007.a03_325.pub2. ISBN 978-3-527-32943-4.
  44. "Lanthanum". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  45. "Cerium". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  46. "Promethium". Radiochemistry Society. 2003. Archived from the original on 2018-11-16.
  47. Castor, Stephen B.; Hedrick, James B. (2006). "Rare Earth Elements". In Kogel, Jessica Elzea; Trivedi, Nikhil C.; Barker, James M.; Krukowski, Stanley T. (eds.). Industrial Minerals & Rocks: Commodities, Markets, and Uses (7th ed.). Society for Mining, Metallurgy, and Exploration. p. 785. ISBN 978-0-87335-233-8. OCLC 62805047.
  48. "Rhenium". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  49. "Price Creator". Fastmarkets. Archived from the original on 2020-03-28.
  50. "Chart Creator". Fastmarkets. Archived from the original on 2020-03-28.
  51. "Iridium". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  52. Keller, Cornelius; Wolf, Walter; Shani, Jashovam (15 October 2011). "Radionuclides, 2. Radioactive Elements and Artificial Radionuclides". In Elvers, Barbara; et al. (eds.). Ullmann's Encyclopedia of Industrial Chemistry. Vol. 31 (7th ed.). Wiley-VCH. sec. 1.5. doi:10.1002/14356007.o22_o15. ISBN 978-3-527-32943-4.
  53. Orozco, Luis A. (30 September 2014). Project Closeout Report Francium trapping facility at TRIUMF (Report). United States Department of Energy. doi:10.2172/1214938. OSTI 1214938.
  54. Lubenau, J. O.; Mould, R. F. (2009). "The roller coaster price of radium". International Nuclear Information System (Abstract). IAEA. Archived from the original on 2020-03-31. Retrieved 2020-02-09.
  55. Gambogi, Joseph (August 2016). Thorium. Minerals Yearbook 2012 (Report). Vol. I. United States Geological Survey. p. 76.3. doi:10.3133/mybvi.
  56. 2018 Uranium Marketing Annual Report (Report). U.S. Energy Information Administration. May 2019. p. 1. Archived from the original on 2020-02-17.
  57. "Neptunium: The Facts". Chemistry Department of Pomona College. Archived from the original on 2003-05-08.
  58. Sublette, Carey (20 February 1999). "Nuclear Weapons Frequently Asked Questions: Section 6.0 Nuclear Materials". The Nuclear Weapon Archive. Archived from the original on 2020-03-25.
  59. Silva, Robert J. (2006). "Fermium, Mendelevium, Nobelium, and Lawrencium". In Morss, Lester R.; Edelstein, Norman M.; Fuger, Jean; Katz, Joseph Jacob (eds.). The Chemistry of the Actinide and Transactinide Elements (3 ed.). Dordrecht: Springer Netherlands. pp. 1621–1651. doi:10.1007/1-4020-3598-5_13. ISBN 978-1-4020-3555-5. OCLC 262685616.
  60. Öhrström, Lars (October 2016). "Brief encounters with dubnium". Nature Chemistry. 8 (10): 986. Bibcode:2016NatCh...8..986O. doi:10.1038/nchem.2610. ISSN 1755-4330. PMID 27657876.
  61. Even, J.; Yakushev, A.; Düllmann, C. E.; Haba, H.; Asai, M.; Sato, T. K.; Brand, H.; Di Nitto, A.; Eichler, R.; Fan, F. L.; Hartmann, W. (19 September 2014). "Synthesis and detection of a seaborgium carbonyl complex". Science. 345 (6203): 1493. Bibcode:2014Sci...345.1491E. doi:10.1126/science.1255720. ISSN 0036-8075. PMID 25237098. S2CID 206558746.
  62. Gäggeler, H. W. (2005). "Chemical properties of transactinides" (PDF). The European Physical Journal A. 25 (S1): 583–587. Bibcode:2005EPJAS..25..583G. doi:10.1140/epjad/i2005-06-202-2. ISSN 1434-6001. S2CID 122557317.
  63. Le Naour, Claire; Hoffman, Darleane C.; Trubert, Didier (2014). Schädel, Matthias; Shaughnessy, Dawn (eds.). Fundamental and Experimental Aspects of Single Atom-at-a-Time Chemistry. Springer-Verlag. p. 241. doi:10.1007/978-3-642-37466-1. ISBN 978-3-642-37465-4. S2CID 122675117. {{cite book}}: |work= ignored (help)
  64. Roberto, J. B.; Alexander, Charles W.; Boll, Rose Ann; Burns, J. D.; Ezold, Julie G.; Felker, Leslie Kevin; Hogle, Susan L.; Rykaczewski, Krzysztof Piotr (December 2015). "Actinide targets for the synthesis of super-heavy elements". Nuclear Physics A. 944. Table 1. Bibcode:2015NuPhA.944...99R. doi:10.1016/j.nuclphysa.2015.06.009. OSTI 1240523.

Share this article:

This article uses material from the Wikipedia article Prices_of_chemical_elements, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.