Prouhet–Thue–Morse_constant

Prouhet–Thue–Morse constant

Prouhet–Thue–Morse constant

Add article description


In mathematics, the Prouhet–Thue–Morse constant, named for Eugène Prouhet [fr], Axel Thue, and Marston Morse, is the number—denoted by τ—whose binary expansion 0.01101001100101101001011001101001... is given by the Prouhet–Thue–Morse sequence. That is,

where tn is the nth element of the Prouhet–Thue–Morse sequence.

Other representations

The Prouhet–Thue–Morse constant can also be expressed, without using tn , as an infinite product,[1]

This formula is obtained by substituting x = 1/2 into generating series for tn

The continued fraction expansion of the constant is [0; 2, 2, 2, 1, 4, 3, 5, 2, 1, 4, 2, 1, 5, 44, 1, 4, 1, 2, 4, 1, …] (sequence A014572 in the OEIS)

Yann Bugeaud and Martine Queffélec showed that infinitely many partial quotients of this continued fraction are 4 or 5, and infinitely many partial quotients are greater than or equal to 50.[2]

Transcendence

The Prouhet–Thue–Morse constant was shown to be transcendental by Kurt Mahler in 1929.[3]

He also showed that the number

is also transcendental for any algebraic number α, where 0 < |α| < 1.

Yann Bugaeud proved that the Prouhet–Thue–Morse constant has an irrationality measure of 2.[4]

Appearances

The Prouhet–Thue–Morse constant appears in probability. If a language L over {0, 1} is chosen at random, by flipping a fair coin to decide whether each word w is in L, the probability that it contains at least one word for each possible length is [5]

See also


Notes

  1. Weisstein, Eric W. "Thue-Morse Constant". MathWorld.
  2. Bugeaud, Yann; Queffélec, Martine (2013). "On Rational Approximation of the Binary Thue-Morse-Mahler Number". Journal of Integer Sequences. 16 (13.2.3).
  3. Mahler, Kurt (1929). "Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen". Math. Annalen. 101: 342–366. doi:10.1007/bf01454845. JFM 55.0115.01. S2CID 120549929.
  4. Bugaeud, Yann (2011). "On the rational approximation to the Thue–Morse–Mahler numbers". Annales de l'Institut Fourier. 61 (5): 2065–2076. doi:10.5802/aif.2666.
  5. Allouche, Jean-Paul; Shallit, Jeffrey (1999). "The Ubiquitous Prouhet-Thue-Morse Sequence". Discrete Mathematics and Theoretical Computer Science: 11.

References



Share this article:

This article uses material from the Wikipedia article Prouhet–Thue–Morse_constant, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.