Reynolds transport theorem

In differential calculus, the Reynolds transport theorem (also known as the Leibniz–Reynolds transport theorem), or simply the Reynolds theorem, named after Osborne Reynolds (1842–1912), is a three-dimensional generalization of the Leibniz integral rule. It is used to recast time derivatives of integrated quantities and is useful in formulating the basic equations of continuum mechanics.

Consider integrating f = f(x,t) over the time-dependent region Ω(t) that has boundary ∂Ω(t), then taking the derivative with respect to time:

If we wish to move the derivative within the integral, there are two issues: the time dependence of f, and the introduction of and removal of space from Ω due to its dynamic boundary. Reynolds transport theorem provides the necessary framework.


Share this article:

This article uses material from the Wikipedia article Reynolds transport theorem, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.