# Riemann integral

In the branch of mathematics known as real analysis, the **Riemann integral**, created by Bernhard Riemann, was the first rigorous definition of the integral of a function on an interval. It was presented to the faculty at the University of Göttingen in 1854, but not published in a journal until 1868.[1] For many functions and practical applications, the Riemann integral can be evaluated by the fundamental theorem of calculus or approximated by numerical integration.

Part of a series of articles about |

Calculus |
---|

The Riemann integral is unsuitable for many theoretical purposes. Some of the technical deficiencies in Riemann integration can be remedied with the Riemann–Stieltjes integral, and most disappear with the Lebesgue integral, though the latter does not have a satisfactory treatment of improper integrals. The gauge integral is a generalisation of the Lebesgue integral that is at once closer to the Riemann integral. These more general theories allow for the integration of more "jagged" or "highly oscillating" functions whose Riemann integral does not exist; but the theories give the same value as the Riemann integral when it does exist.

In educational settings, the Darboux integral offers a simpler definition that is easier to work with; it can be used to introduce the Riemann integral. The Darboux integral is defined whenever the Riemann integral is, and always gives the same result. Conversely, the gauge integral is a simple but more powerful generalization of the Riemann integral and has led some educators to advocate that it should replace the Riemann integral in introductory calculus courses.[2]