South_American_Land_Mammal_Ages

South American land mammal age

South American land mammal age

Geologic timescale for prehistoric South American fauna


The South American land mammal ages (SALMA) establish a geologic timescale for prehistoric South American fauna beginning 64.5 Ma during the Paleocene and continuing through to the Late Pleistocene (0.011 Ma). These periods are referred to as ages, stages, or intervals and were established using geographic place names where fossil materials where obtained.[1]

South American land mammal age
South American land mammal age
South American land mammal age
South American land mammal age
South American land mammal age
South American land mammal age
South American land mammal age
South American land mammal age
South American land mammal age
South American land mammal age
South American land mammal age
South American land mammal age
South American land mammal age
South American land mammal age
South American land mammal age
South American land mammal age
South American land mammal age
South American land mammal age
South American land mammal age
South American land mammal age
South American land mammal age
South American land mammal age
Locations of SALMA type localities
Pleistocene ages
Pliocene ages
Miocene ages
Oligocene ages
Eocene ages
Paleocene ages

The basic unit of measurement is the first/last boundary statement. This shows that the first appearance event of one taxon is known to predate the last appearance event of another. If two taxa are found in the same fossil quarry or at the same stratigraphic horizon, then their age-range zones overlap.

Background

South America was an island continent for much of the Cenozoic, or the "Age of Mammals". As a result, its mammals evolved in their own unique directions, as Australia and Madagascar still have today.

Paleogeographic timeline

A simplified paleogeographic timeline of South America:[2]

  • 66 Ma – South America was connected to both North America and Antarctica. Soon after this point, it lost its connection to North America.
  • 66–50 Ma – Tiupampan to Casamayoran - South America was connected to Antarctica which, in turn, was connected to Australia. The Antarctica–Australia connection was lost around the end of this interval or perhaps as much as 15 million years later.
  • 50–34 Ma – Casamayoran to Tinguirirican - South America was connected to Antarctica, which was not yet covered by ice.
  • 34 Ma – Tinguirirican - South America and Antarctica became detached and glaciations started to form in Antarctica.
  • 34–9 Ma – Tinguirirican to Chasicoan - South America had no land connections to any other continent.
  • 9–3 Ma – Huayquerian to Chapadmalalan - islands formed between South and North America. A complete Isthmus of Panama most likely formed near the end of this interval, leading to the Great American Biotic Interchange (GABI).
  • 3 Ma to present – Uquian to Holocene - the land connection between South and North America is established and migration between the formerly separated continents occurs. Significantly higher rates of extinction due to climatic changes occur in South America compared to North America, resulting in an asymmetrical exchange of species between the continents. North American originating taxa diversify significantly in South America during this period.[3] It was previously believed this asymmetry was due to the main migrational route being from north to south, rather than the opposite way.
  • Pleistocene – the glacials and interglacials of the Pleistocene caused drastic eustatic sea level changes, widening and narrowing the land bridge at the 'bottleneck' of Panama. As a side-effect, the vegetation changed during this period of strong climatic changes.
  • Late Pleistocene – the earliest humans arrived in South America and settled in various parts of the continent. Evidence for cohabitation with the latest Pleistocene megafauna has been found at multiple locations, such as Monte Verde in coastal Chile and Tibitó on the Altiplano Cundiboyacense in Colombia.
Since about 110 million years ago, South America and Africa are detached
Antarctica, Australia and South America were attached as one large isolated paleocontinent for about 15 million years
The Drake Passage, separating South America from Antarctica, was formed since the latest Eocene (~35 Ma)
The paleogeographical history of South America, with the separation from Africa and Antarctica

Definitions

More information Epoch, SALMA ...

Cenozoic fossiliferous stratigraphic units in South America

The following formations have provided vertebrate, insect or plant fossils, formations with other invertebrates are excluded:

More information SALMA, Formations ...

Fossil content

More information SALMA, Group ...

See also


Notes and references

Notes

  1. In later research considered part of the Camacho Formation[97]

References

  1. Flynn & Swisher, 1995
  2. Carrillo, Juan D.; Faurby, Søren; Silvestro, Daniele; Zizka, Alexander; Jaramillo, Carlos; Bacon, Christine D.; Antonelli, Alexandre (2020-10-20). "Disproportionate extinction of South American mammals drove the asymmetry of the Great American Biotic Interchange". Proceedings of the National Academy of Sciences. 117 (42): 26281–26287. Bibcode:2020PNAS..11726281C. doi:10.1073/pnas.2009397117. ISSN 0027-8424. PMC 7585031. PMID 33020313.
  3. Blasi et al., 2010, p.88
  4. Fucks et al., 2011, p.110
  5. Mapa Geológico del Paraguay, 1986, p.42
  6. Filí, 2001, p.28
  7. López Mendoza et al, 2010, p.22
  8. Alvarenga et al., 2010, p.230
  9. Martínez & Ubilla, 2009, p.211
  10. Vezzosi, 2015, p.89
  11. Zurita et al., 2009, p.279
  12. Soibelzon et al., 2010, p.315
  13. Vezzosi, 2015, p.30
  14. Villarroel et al., 1989, p.120
  15. Córdova Aguilar, 2009, p.74
  16. Combina & Sánchez, 2003, p.126
  17. Marshall & Sempere, 1991, p.643
  18. Pardiñas & Galliari, 1998, p.18
  19. Córdova Aguilar, 2009, p.75
  20. Páramo & Escobar, 2010, p.52
  21. Montoya & Reyes, 2005, p.72
  22. Brambilla & Ibarra
  23. Vezzosi, 2015, p.143
  24. Córdova Aguilar, 2009, p.76
  25. Isla et al., 2015, p.245
  26. Oliveira et al., 2005, p.216
  27. Villarroel et al., 2001, p.90
  28. Martínez & Ubilla, 2009, p.212
  29. Marshall & Sempere, 1991, p.642
  30. Vezzosi, 2015, p.41
  31. Kerber et al., 2014, p.250
  32. Marshall & Sempere, 1991, p.639
  33. Tonni et al., 1999, p.277
  34. Picasso & Degrange, 2009, p.429
  35. Agnolin, 2006
  36. Buchmann et al., 2009, p.9
  37. Granadino, 2012, p.18
  38. Isla et al., 2015, p.236
  39. Marshall & Sempere, 1991, p.640
  40. Reguero & Candela, 2008, p.291
  41. Orgeira, 1988, p.26
  42. Franco et al., 2013, p.41
  43. Erra et al., 2016, p.65
  44. Le Roux et al., 2016, p.46
  45. Segovia, 2014, p.142
  46. Renner & Velasco, 2000, p.26
  47. Castro et al., 2014, p.5
  48. Moreno et al., 2015, p.7
  49. Olivares et al., 2012, p.200
  50. Elissamburu et al., 2011, p.228
  51. Vezzosi, 2015, p.257
  52. Muruaga, 2001, p.30
  53. Zamorano, 2013, p.284
  54. Le Roux et al., 2006, p.49
  55. Carillo Briceño et al., 2013, p.194
  56. Chávez, 2008
  57. Brand et al., 2011
  58. Solíz Mundaca, 2018, p.14
  59. Cerdeño et al., 2008, p.225
  60. Rinderknecht & Noriega, 2002, p.185
  61. Ciccioli, 2017, p.72
  62. Agnolin et al., 2014, p.20
  63. Albino et al., 2009, p.79
  64. Bogan & Agnolin, 2009, p.193
  65. Nasif et al., p.101
  66. Gutiérrez & Mon, 2004
  67. Di Celma & Cantalamessa, 2007
  68. Cerdeño et al., 2012
  69. Quijano Ballesteros, 2005, p.19
  70. Bonini, 2014, p.58
  71. Antoine et al., 2016, p.56
  72. Castro Medina, 2010, p.58
  73. Romero Carrasco, 2017, p.8
  74. Finger et al., 2007, p.13
  75. Ramírez Parrales, 2013, p.52
  76. Reguero et al., 2015, p.60
  77. Mendi & Rodríguez, 2005, p.19
  78. Cione et al., 2005, p.57
  79. Tófalo & Morrás, 2009, p.683
  80. Pérez, 2012, p.11
  81. Cozzuol, 2006, p.190
  82. Forasiepi et al., 2011, p.136
  83. Garrido et al., 2017, p.54
  84. Verde, 2002, p.21
  85. Goin et al., 2000, p.101
  86. Verzi et al., 2008, p.146
  87. Morton & Herbst, s.a., p.1
  88. Cerdeño et al., 2019, p.12
  89. Czaplewski & Campbell, 2017
  90. Frailey, 1986, p.4
  91. García López & Barbot, 2015, p.315
  92. Franco et al., 2013, p.44
  93. Vezzosi, 2015, p.27
  94. Verde, 2002, p.20
  95. Romero et al., 1998, p.60
  96. Pujos et al., 2012, p.2
  97. Marshall & Sempere, 1991, p.636
  98. Córdova Aguilar, 2009, p.26
  99. Morton & Herbst, 2007, p.154
  100. Marshall & Sempere, 1991, p.637
  101. Martín Pérez, 2013, p.51
  102. Brea et al., 2013, p.28
  103. Wesselingh et al., 2006, p.304
  104. González & Abascal, 2012, p.129
  105. Baldellón et al., 1994, p.241
  106. Marshall & Sempere, 1991
  107. Brandoni et al., 2012, p.10
  108. Linares, 2004, p.16
  109. Deschamps et al., 2009, p.296
  110. Acosta Hospitaleche et al., 2007, p.301
  111. Escosteguy et al., 2003
  112. Reichler, 2010, p.181
  113. García et al., 1999, p.251
  114. Hernández et al., 2002, p.5
  115. Villarroel et al., 1996, p.54
  116. Marshall & Sempere, 1991, p.635
  117. Forasiepi et al., 2011, p.149
  118. Penín & Villarroel, 2005, p.138
  119. Utgé et al., 2009
  120. Cerdeño & Guiomar, 2007, p.201
  121. Simpson, 1947, p.2
  122. Villarroel & Clavijo, 2005, p.348
  123. Linares, 2004, p.5
  124. Escosteguy & Franchi, 2010, p.422
  125. Dalla Salda & Franzese, 1987, p.7
  126. Croft et al., 2016, p.2
  127. Marshall, 1990
  128. Marshall & Salinas, 1990
  129. De la Cruz, 2008, p.53
  130. Solíz Mundaca, 2018, p.13
  131. Paolillo & Linares, 2007, p.2
  132. Acosta Hospitaleche et al., 2018, p.442
  133. Acosta Hospitaleche et al., 2013, p.491
  134. Rincón et al., 2016, p.19
  135. Vizcaíno et al., 2012
  136. Pérez Panera, 2010, p.52
  137. Mendi & Rodríguez, 2005, p.20
  138. Johnson, 2009, p.60
  139. Dal Molín & Colombo, 2003, p.140
  140. Horovitz & Sánchez Villagra, 2012, p.145
  141. Croft et al., 2007, p.781
  142. Kramarz, 2001, p.10
  143. Dozo et al., 2014, p.241
  144. Godoy et al., 2012
  145. Muñoz et al., 2006
  146. Veintimilla González, 2015, p.47
  147. Kramarz et al., 2005
  148. Kramarz et al., 2005, p.288
  149. Acosta Hospitaleche, 2007, p.419
  150. Náñez et al., 2009
  151. Córdova Aguilar, 2009, p.24
  152. De Araújo et al., 2010, p.207
  153. Acosta & Tambussi, 2005, p.128
  154. Agnolin, 2006, p.27
  155. Combina & Nullo, 2011, p.201
  156. Acosta et al., 2002, p.49
  157. Castro Medina, 2010, p.55
  158. Lorenzo et al., 2018, p.41
  159. Bond et al., 1998, p.42
  160. Tófalo & Morrás, 2009, p.680
  161. Alván et al., 2017, p.56
  162. Gómez et al., 2008, p.48
  163. Billet et al., 2008, p.153
  164. Le Roux et al., 2010, p.332
  165. Reguero & Cerdeño, 2005, p.674
  166. Do Couto Ribeiro, 2010, p.88
  167. Chacaltana et al., 2015, p.2
  168. Castro Medina, 2010, p.53
  169. Gonçalves Pereira, 2015, p.124
  170. Billet et al., 2010
  171. Vizan et al., 2013
  172. Otero et al., 2012
  173. Castro Medina, 2010, p.56
  174. Solíz Mundaca, 2018, p.12
  175. Lorenzo et al., 2018, p.34
  176. Carlotto, 2016, p.522
  177. Cerdeño & Guiomar, M2007, p.200
  178. Tejedor et al., 2009, p.6
  179. Clarke et al., 2003
  180. Clarke et al., 2007, p.11545
  181. Castro Medina, 2010, p.54
  182. Solíz Mundaca, 2018, p.11
  183. Ciancio et al., 2016, p.577
  184. López & Bond, 1995, p.92
  185. Wilf et al., 2005, p.634
  186. Wilf et al., 2005
  187. Campbell et al., 2014, p.13
  188. Raigemborn et al., 2010, p.252
  189. Bayona et al., 2012, p.103
  190. Marshall & Sempere, 1991, p.633
  191. Mendes et al., 2015, p.28
  192. Sedor et al., 2017, p.39
  193. Escosteguy & Franchi, 2010, p.420
  194. Hernández, 2003, p.47
  195. Cadena & Schweitzer, 2014, p.461
  196. Del Papa, 2006, p.314
  197. Narváez, 2009, p.24
  198. Del Papa et al., 2013, p.59
  199. Payrola Bosio et al., 2010, p.312
  200. Raigemborn et al., 2010, p.240
  201. Scarfati et al., 2009, p.36
  202. Raigemborn et al., 2010, p.251
  203. Quispe Alcalá, 2010, p.21
  204. Gelfo & Goin, 2011
  205. Clyde et al., 2014, p.303
  206. Pol & Powell, 2011, S9
  207. Oliveira & Goin, 2011
  208. Jaramillo et al., 2007, p.168
  209. Raigemborn et al., 2010, p.249
  210. Sánchez & Marquillas, 2010, p.389
  211. Montoya & Reyes, 2005, p.54
  212. Sempere et al., 1997, p.709
  213. Goin et al., 2006
  214. Carvalho et al., 2016, p.493
  215. Vezzosi, 2015, pp.636-637
  216. Vezzosi, 2015, p.899
  217. Góis et al., 2012
  218. Góis et al., 2015
  219. Machado et al., 2014
  220. Ortiz et al., 2013
  221. Vezzosi, 2015, pp.631-632
  222. Agnolin, 2006, p.93
  223. Agnolin, 2006, p.83
  224. Agnolin, 2006, p.84
  225. Agnolin, 2006, p.86
  226. Agnolin, 2006, p.88
  227. Olivares & Verzi, 2015
  228. Tonni & Noriega, 1996
  229. Daza et al., 2012
  230. Barbière et al., 2016
  231. Castro et al., 2014
  232. Moreno et al., 2015, p.35
  233. Amson et al., 2016, pp.3–15
  234. Pérez et al., 2017
  235. Degrange et al., 2015
  236. Pérez Ben et al., 2019
  237. Barbière et al., 2018
  238. Armella et al., 2018
  239. Candela & Bonini, 2017
  240. Carrillo et al., 2018
  241. Pujos et al., 2016
  242. Benson, 2015
  243. Nicoli, 2015

Bibliography

SALMA

  • Flynn, J., and C.C. Swisher. 1995. Cenozoic South American Land Mammal Ages: correlation to global geochronology. Geochronology Time Scales and Global Stratigraphic Correlation, SEPM Special Publication 54. 317–333. .
Paleogene

Pebas Wetlands

Argentina

Paleogene
Pleistocene
Austral Basin
Santa María-Hualfín Basin
Santa Fe Province
Aconquija Formation
Agua de la Piedra Formation
Aisol Formation
Andalhuala Formation
Andesitas Huancache Formation
Arroyo Chasicó Formation
Belgrano Formation
Bororó Formation
Brochero Formation
Casamayor Formation
Cerro Azul Formation
Cerro Bandera Formation
Chapadmalal Formation
Chichinales Formation
Chiquimil Formation
Collón Curá Formation
Deseado Formation
Divisadero Largo Formation
La Ensenada Formation
Las Flores Formation, Sierra del Tontal
Las Flores Formation, Golfo San Jorge Basin
Fortín Tres Pozos Formation
Gaiman Formation
Geste Formation
Gran Bajo del Gualicho Formation
Hernandarias Formation
Huayquerías Formation
Huitrera Formation
India Muerta Formation
La Invernada Formation
Ituzaingó Formation
Koluel Kaike Formation
Laguna Brava Formation
  • Vizán, H.; S. Geuna; R. Melchor; E.S. Bellosi; S.L. Lagorio; C. Vásquez; M.S. Japas; G. Ré, and M. Do Campo. 2013. Geological setting and paleomagnetism of the Eocene red beds of Laguna Brava Formation (Quebrada Santo Domingo, northwestern Argentina). Tectonophysics 583. 105–123. .
Laguna del Hunco Formation
Lefipán Formation
Leticia Formation
Loma de Las Tapias Formation
Luján Formation
Lumbrera Formation
Maimará Formation
Maíz Gordo Formation
Mariño Formation
Mealla Formation
Miramar & San Andrés Formations
Monte Hermoso Formation
Monte León Formation
El Morterito Formation
Palo Pintado Formation
Paraná Formation
Peñas Coloradas Formation
Pinturas Formation
Piquete Formation
Playa de Los Lobos Allo Formation
Puerta del Diablo Formation
Puerto Madryn Formation
Quebrada de Los Colorados Formation
Río Chico Group
Río Foyel Formation
Río Loro Formation
Río Mayo Formation
  • Escosteguy, Leonardo; Carlos Dal Molín; Mario Franchi; Silvena Guena; Omar Lapido, and Adolfo Genini. 2003. Hoja Geológica 4772-II Lago Buenos Aires, 1–80. Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino. Accessed 2018-09-10.
Río Negro Formation
Río Quinto Formation
Saladillo Formation
Salamanca Formation
Saldungaray Formation
Salicas Formation
Santa Cruz Formation
Sarmiento Formation & Colhué Huapí Member
Toro Negro Formation
Uquía Formation
Vaca Mahuida Formation
Ventana Formation
Vorohué Formation
Yupoí Formation

Bolivia

Casira Formation
Cerdas beds
Honda Group
Lacayani fauna
Ñuapua Formation
Quehua Formation
Salla Formation
Santa Lucía Formation
Tarija Formation
Umala Formation
Yecua & Petaca Formations

Brazil

Entre-Corrégos Formation
Fonseca Formation
Graxaim Formation
Guabirotuba Formation
Içá Formation
Itaboraí Formation
Maria Farinha Formation
Pirabas Formation
Rio Madeira Formation
Santa Vitória Formation
Solimões Formation
Touro Passo Formation
Tremembé Formation

Chile

Abanico Formation
Bahía Inglesa Formation
Caleta Herradura Formation
  • Di Celma, Claudio, and Gino Cantalamessa. 2007. Sedimentology and high-frequency sequence stratigraphy of a forearc extensional basin: The Miocene Caleta Herradura Formation, Mejillones Peninsula, northern Chile. Sedimentary Geology 198. 29–52. .
Chíu-Chíu Formation
Chucal Formation
Coquimbo Formation
Cura-Mallín Group
Horcón Formation
Huaylas Formation
Loreto Formation
Navidad Formation
La Portada Formation
Río Baguales Formation
Río Frías Formation

Colombia

Altiplano Cundiboyacense
Cesar-Ranchería Basin
Cocinetas Basin
Barzalosa Formation
  • Acosta, Jorge E.; Rafael Guatame; Juan Carlos Caicedo A., and Jorge Ignacio Cárdenas. 2002. Mapa Geológico de Colombia - Plancha 245 - Girardot - 1:100,000 - Memoria Explicativa, 1–92. INGEOMINAS.
Gualanday Group
Honda Group
Los Hoyos beds
Mugrosa Formation
  • Gómez, Luis Alfonso; Alejandro Patiño; Giancarlo Renzoni; Alejandro Beltrán; Claudia Quintero, and Martín Manrique. 2008. Geología de la Plancha 119 Barrancabermeja - 1:100,000, 1–105. INGEOMINAS.
Rotinet Formation
Sincelejo Formation

Ecuador

Biblián Formation
Dos Bocas Formation
Letrero Formation
Onzole Formation
Seca Formation

Paraguay

Chaco Formation

Peru

Peruvian Amazon
Sechura Basin
Chambira Formation
Chilcatay Formation
Chota Formation
Iñapari Formation
Madre de Dios Formation
Mogollón Formation
Moquegua Formation
Muñani Formation
Paracas Formation
Pisco Formation
Pozo Formation
Soncco Formation
Yahuarango Formation
Yumaque Formation

Uruguay

Pleistocene
Camacho Formation
Dolores Formation
Fray Bentos Formation
Raigón Formation
San José Formation
Sopas Formation

Venezuela

Chaguaramas Formation
  • Horovitz, Inés, and Marcelo R. Sánchez Villagra. 2012. El Registro Fósil del Cenozoico, 133–156. Venezuela Paleontológica: Evolución de la diversidad en el pasado. Accessed 2017-10-21.
Parángula Formation
Falcón Basin
Cantaure & Paraguaná Formations
Capadare Formation
Castillo Formation
Mesa Formation
Río Yuca Formation
San Gregorio Formation
Santa Inés Formation
Urumaco, Socorro & Codore Formations

Further reading


Share this article:

This article uses material from the Wikipedia article South_American_Land_Mammal_Ages, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.