# Steady state

In systems theory, a system or a process is in a **steady state** if the variables (called state variables) which define the behavior of the system or the process are unchanging in time.[1] In continuous time, this means that for those properties *p* of the system, the partial derivative with respect to time is zero and remains so:

In discrete time, it means that the first difference of each property is zero and remains so:

The concept of a steady state has relevance in many fields, in particular thermodynamics, economics, and engineering. If a system is in a steady state, then the recently observed behavior of the system will continue into the future.[1] In stochastic systems, the probabilities that various states will be repeated will remain constant. See for example Linear difference equation#Conversion to homogeneous form for the derivation of the steady state.

In many systems, a steady state is not achieved until some time after the system is started or initiated. This initial situation is often identified as a transient state, start-up or warm-up period.[1] For example, while the flow of fluid through a tube or electricity through a network could be in a steady state because there is a constant flow of fluid or electricity, a tank or capacitor being drained or filled with fluid is a system in transient state, because its volume of fluid changes with time.

Often, a steady state is approached asymptotically. An unstable system is one that diverges from the steady state. See for example Linear difference equation#Stability.

In chemistry, a steady state is a more general situation than dynamic equilibrium. While a dynamic equilibrium occurs when two or more reversible processes occur at the same rate, and such a system can be said to be in a steady state, a system that is in a steady state may not necessarily be in a state of dynamic equilibrium, because some of the processes involved are not reversible.