Strain_hardening_exponent

Strain hardening exponent

Strain hardening exponent

Add article description


The strain hardening exponent (also called the strain hardening index), usually denoted , a constant often used in calculations relating to stress–strain behavior in work hardening. It occurs in the formula known as Hollomon's equation (after John Herbert Hollomon Jr.) who originally posited it as

[1]

where represents the applied true stress on the material, is the true strain, and is the strength coefficient.

The value of the strain hardening exponent lies between 0 and 1, with a value of 0 implying a perfectly plastic solid and a value of 1 representing a perfectly elastic solid. Most metals have an -value between 0.10 and 0.50.

Tabulation

More information Tabulation of ...

References

  1. J. H. Hollomon, Tensile deformation, Trans. AIME, vol. 162, (1945), pp. 268-290.
  2. Callister, Jr., William D (2005), Fundamentals of Materials Science and Engineering (2nd ed.), United States of America: John Furkan & Sons, p. 199, ISBN 978-0-471-47014-4
  3. Kalpakjian, S (2014), Manufacturing engineering and technology (2nd ed.), Singapore: Pearson Education South Asia Pte, p. 62
  4. "41.2 Roll Formed Aluminum Alloy Components". ASM handbook (10th ed.). Materials Park, Ohio: ASM International. Handbook Committee. 2005. p. 482. ISBN 978-0-87170-377-4. OCLC 21034891.



Share this article:

This article uses material from the Wikipedia article Strain_hardening_exponent, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.