TNFR1

Tumor necrosis factor receptor 1

Tumor necrosis factor receptor 1

Membrane receptor protein found in humans


Tumor necrosis factor receptor 1 (TNFR1), also known as tumor necrosis factor receptor superfamily member 1A (TNFRSF1A) and CD120a, is a ubiquitous membrane receptor that binds tumor necrosis factor-alpha (TNFα).[5][6][7]

Quick Facts TNFRSF1A, Available structures ...

Function

The protein encoded by this gene is a member of the tumor necrosis factor receptor superfamily, which also contains TNFRSF1B. This protein is one of the major receptors for the tumor necrosis factor-alpha. This receptor can activate the transcription factor NF-κB, mediate apoptosis, and function as a regulator of inflammation. Antiapoptotic protein BCL2-associated athanogene 4 (BAG4/SODD) and adaptor proteins TRADD and TRAF2 have been shown to interact with this receptor, and thus play regulatory roles in the signal transduction mediated by the receptor.[8]

Clinical significance

Germline mutations of the extracellular domains of this receptor were found to be associated with the human genetic disorder called tumor necrosis factor associated periodic syndrome (TRAPS) or periodic fever syndrome.[9] Impaired receptor clearance is thought to be a mechanism of the disease.

Mutations in the TNFRSF1A gene are associated with elevated risk of multiple sclerosis.[10]

Serum levels of TNFRSF1A are elevated in schizophrenia and bipolar disorder,[11] and high levels are associated with more severe psychotic symptoms.[12]

High serum levels are also associated with cognitive impairment and dementia.[13][14]

Interactions

TNFRSF1A has been shown to interact with:

See also


References

  1. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  2. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. Baker E, Chen LZ, Smith CA, Callen DF, Goodwin R, Sutherland GR (November 1991). "Chromosomal location of the human tumor necrosis factor receptor genes". Cytogenet Cell Genet. 57 (2–3): 117–8. doi:10.1159/000133127. PMID 1655358.
  4. Schall TJ, Lewis M, Koller KJ, Lee A, Rice GC, Wong GH, Gatanaga T, Granger GA, Lentz R, Raab H, et al. (June 1990). "Molecular cloning and expression of a receptor for human tumor necrosis factor". Cell. 61 (2): 361–70. doi:10.1016/0092-8674(90)90816-W. PMID 2158863. S2CID 36187863.
  5. Offermanns S, Rosenthal W (2008). Encyclopedia of Molecular Pharmacology, Vol. 1 (2nd ed.). Heidelberg, Germany: Springer. p. 1248. ISBN 9783540389163.
  6. Kümpfel T, Hohlfeld R (October 2009). "Multiple sclerosis. TNFRSF1A, TRAPS and multiple sclerosis". Nat Rev Neurol. 5 (10): 528–9. doi:10.1038/nrneurol.2009.154. PMID 19794511. S2CID 40665495.
  7. Hope S, Melle I, Aukrust P, Steen NE, Birkenaes AB, Lorentzen S, Agartz I, Ueland T, Andreassen OA (November 2009). "Similar immune profile in bipolar disorder and schizophrenia: selective increase in soluble tumor necrosis factor receptor I and von Willebrand factor". Bipolar Disord. 11 (7): 726–34. doi:10.1111/j.1399-5618.2009.00757.x. hdl:10852/34620. PMID 19839997.
  8. Hope S, Ueland T, Steen NE, Dieset I, Lorentzen S, Berg AO, Agartz I, Aukrust P, Andreassen OA (April 2013). "Interleukin 1 receptor antagonist and soluble tumor necrosis factor receptor 1 are associated with general severity and psychotic symptoms in schizophrenia and bipolar disorder". Schizophr. Res. 145 (1–3): 36–42. doi:10.1016/j.schres.2012.12.023. PMID 23403415.
  9. Buchhave P, Zetterberg H, Blennow K, Minthon L, Janciauskiene S, Hansson O (November 2010). "Soluble TNF receptors are associated with Aβ metabolism and conversion to dementia in subjects with mild cognitive impairment". Neurobiol. Aging. 31 (11): 1877–84. doi:10.1016/j.neurobiolaging.2008.10.012. PMID 19070941. S2CID 34595960.
  10. Diniz BS, Teixeira AL, Ojopi EB, Talib LL, Mendonça VA, Gattaz WF, Forlenza OV (2010). "Higher serum sTNFR1 level predicts conversion from mild cognitive impairment to Alzheimer's disease". J. Alzheimers Dis. 22 (4): 1305–11. doi:10.3233/JAD-2010-100921. PMID 20930310.
  11. Jiang Y, Woronicz JD, Liu W, Goeddel DV (1999). "Prevention of constitutive TNF receptor 1 signaling by silencer of death domains". Science. 283 (5401): 543–6. Bibcode:1999Sci...283..543J. doi:10.1126/science.283.5401.543. PMID 9915703.
  12. Chaudhary PM, Eby MT, Jasmin A, Kumar A, Liu L, Hood L (2000). "Activation of the NF-kappaB pathway by caspase 8 and its homologs". Oncogene. 19 (39): 4451–60. doi:10.1038/sj.onc.1203812. PMID 11002417.
  13. Guo D, Dunbar JD, Yang CH, Pfeffer LM, Donner DB (1998). "Induction of Jak/STAT signaling by activation of the type 1 TNF receptor". J. Immunol. 160 (6): 2742–50. doi:10.4049/jimmunol.160.6.2742. PMID 9510175.
  14. Miscia S, Marchisio M, Grilli A, Di Valerio V, Centurione L, Sabatino G, Garaci F, Zauli G, Bonvini E, Di Baldassarre A (2002). "Tumor necrosis factor alpha (TNF-alpha) activates Jak1/Stat3-Stat5B signaling through TNFR-1 in human B cells". Cell Growth Differ. 13 (1): 13–8. PMID 11801527.
  15. Blankenship JW, Varfolomeev E, Goncharov T, Fedorova AV, Kirkpatrick DS, Izrael-Tomasevic A, Phu L, Arnott D, Aghajan M, Zobel K, Bazan JF, Fairbrother WJ, Deshayes K, Vucic D (2009). "Ubiquitin binding modulates IAP antagonist-stimulated proteasomal degradation of c-IAP1 and c-IAP2(1)". Biochem. J. 417 (1): 149–60. doi:10.1042/BJ20081885. PMID 18939944.
  16. Newton K, Matsumoto ML, Wertz IE, Kirkpatrick DS, Lill JR, Tan J, Dugger D, Gordon N, Sidhu SS, Fellouse FA, Komuves L, French DM, Ferrando RE, Lam C, Compaan D, Yu C, Bosanac I, Hymowitz SG, Kelley RF, Dixit VM (2008). "Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies". Cell. 134 (4): 668–78. doi:10.1016/j.cell.2008.07.039. PMID 18724939. S2CID 3955385.
  17. Varfolomeev E, Goncharov T, Fedorova AV, Dynek JN, Zobel K, Deshayes K, Fairbrother WJ, Vucic D (2008). "c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation". J. Biol. Chem. 283 (36): 24295–9. doi:10.1074/jbc.C800128200. PMC 3259840. PMID 18621737.
  18. Okura T, Gong L, Kamitani T, Wada T, Okura I, Wei CF, Chang HM, Yeh ET (1996). "Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin". J. Immunol. 157 (10): 4277–81. doi:10.4049/jimmunol.157.10.4277. PMID 8906799.
  19. Schütze S, Machleidt T, Adam D, Schwandner R, Wiegmann K, Kruse ML, Heinrich M, Wickel M, Krönke M (1999). "Inhibition of receptor internalization by monodansylcadaverine selectively blocks p55 tumor necrosis factor receptor death domain signaling". J. Biol. Chem. 274 (15): 10203–12. doi:10.1074/jbc.274.15.10203. PMID 10187805.
  20. Pan G, O'Rourke K, Chinnaiyan AM, Gentz R, Ebner R, Ni J, Dixit VM (1997). "The receptor for the cytotoxic ligand TRAIL". Science. 276 (5309): 111–3. doi:10.1126/science.276.5309.111. PMID 9082980. S2CID 19984057.
  21. Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S, Hopf C, Huhse B, Mangano R, Michon AM, Schirle M, Schlegl J, Schwab M, Stein MA, Bauer A, Casari G, Drewes G, Gavin AC, Jackson DB, Joberty G, Neubauer G, Rick J, Kuster B, Superti-Furga G (2004). "A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway". Nat. Cell Biol. 6 (2): 97–105. doi:10.1038/ncb1086. PMID 14743216. S2CID 11683986.
  22. Saltzman A, Searfoss G, Marcireau C, Stone M, Ressner R, Munro R, Franks C, D'Alonzo J, Tocque B, Jaye M, Ivashchenko Y (1998). "hUBC9 associates with MEKK1 and type I TNF-alpha receptor and stimulates NFkappaB activity". FEBS Lett. 425 (3): 431–5. doi:10.1016/S0014-5793(98)00287-7. PMID 9563508. S2CID 84816080.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.


Share this article:

This article uses material from the Wikipedia article TNFR1, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.