# Time-invariant system

A **time-invariant** (TIV) system has a time-dependent **system function** that is not a direct function of time. Such systems are regarded as a class of systems in the field of system analysis. The time-dependent system function is a function of the time-dependent **input function**. If this function depends *only* indirectly on the time-domain (via the input function, for example), then that is a system that would be considered time-invariant. Conversely, any direct dependence on the time-domain of the system function could be considered as a "time-varying system".

It has been suggested that this article be merged into Linear time-invariant system. (Discuss) Proposed since July 2021. |

This article needs additional citations for verification. (May 2018) |

Mathematically speaking, "time-invariance" of a system is the following property:[4]^{: p. 50 }

*Given a system with a time-dependent output function and a time-dependent input function the system will be considered time-invariant if a time-delay on the input directly equates to a time-delay of the output function. For example, if time is "elapsed time", then "time-invariance" implies that the relationship between the input function and the output function is constant with respect to time :*

In the language of signal processing, this property can be satisfied if the transfer function of the system is not a direct function of time except as expressed by the input and output.

In the context of a system schematic, this property can also be stated as follows, as shown in the figure to the right:

*If a system is time-invariant then the system block commutes with an arbitrary delay.*

If a time-invariant system is also linear, it is the subject of linear time-invariant theory (linear time-invariant) with direct applications in NMR spectroscopy, seismology, circuits, signal processing, control theory, and other technical areas. Nonlinear time-invariant systems lack a comprehensive, governing theory. Discrete time-invariant systems are known as shift-invariant systems. Systems which lack the time-invariant property are studied as time-variant systems.