Timeline_of_algebra

Timeline of algebra

Timeline of algebra

Notable events in the history of algebra


The following is a timeline of key developments of algebra:

More information ...

See also


References

  1. Anglin, W.S (1994). Mathematics: A Concise History and Philosophy. Springer. p. 8. ISBN 978-0-387-94280-3.
  2. Smith, David Eugene Smith (1958). History of Mathematics. Courier Dover Publications. p. 443. ISBN 978-0-486-20430-7.
  3. "Egyptian Mathematics Papyri". Mathematicians and Scientists of the African Diaspora. The State University of New York at Buffalo.
  4. Euclid (January 1956). Euclid's Elements. Courier Dover Publications. p. 258. ISBN 978-0-486-60089-5.
  5. Crossley, John; W.-C. Lun, Anthony (1999). The Nine Chapters on the Mathematical Art: Companion and Commentary. Oxford University Press. p. 349. ISBN 978-0-19-853936-0.
  6. Hayashi (2005), p. 371. "The dates so far proposed for the Bakhshali work vary from the third to the twelfth centuries AD, but a recently made comparative study has shown many similarities, particularly in the style of exposition and terminology, between Bakhshalī work and Bhāskara I's commentary on the Āryabhatīya. This seems to indicate that both works belong to nearly the same period, although this does not deny the possibility that some of the rules and examples in the Bakhshālī work date from anterior periods."
  7. Boyer (1991), "The Arabic Hegemony" p. 227. "The first century of the Muslim empire had been devoid of scientific achievement. This period (from about 650 to 750) had been, in fact, perhaps the nadir in the development of mathematics, for the Arabs had not yet achieved intellectual drive, and concern for learning in other parts of the world had faded. Had it not been for the sudden cultural awakening in Islam during the second half of the eighth century, considerably more of ancient science and mathematics would have been lost. To Baghdad at that time were called scholars from Syria, Iran, and Mesopotamia, including Jews and Nestorian Christians; under three great Abbasid patrons of learning - al Mansur, Haroun al-Raschid, and al-Mamun - The city became a new Alexandria. It was during the caliphate of al-Mamun (809-833), however, that the Arabs fully indulged their passion for translation. The caliph is said to have had a dream in which Aristotle appeared, and as a consequence al-Mamun determined to have Arabic versions made of all the Greek works that he could lay his hands on, including Ptolemy's Almagest and a complete version of Euclid's Elements. From the Byzantine Empire, with which the Arabs maintained an uneasy peace, Greek manuscripts were obtained through peace treaties. Al-Mamun established at Baghdad a "House of Wisdom" (Bait al-hikma) comparable to the ancient Museum at Alexandria."
  8. Boyer (1991), "The Arabic Hegemony" p. 229. "It is not certain just what the terms al-jabr and muqabalah mean, but the usual interpretation is similar to that implied in the translation above. The word al-jabr presumably meant something like "restoration" or "completion" and seems to refer to the transposition of subtracted terms to the other side of an equation; the word muqabalah is said to refer to "reduction" or "balancing" - that is, the cancellation of like terms on opposite sides of the equation."
  9. Rashed, R.; Armstrong, Angela (1994). The Development of Arabic Mathematics. Springer. pp. 11–2. ISBN 0-7923-2565-6. OCLC 29181926.
  10. Boyer (1991), "The Arabic Hegemony" p. 239. "Abu'l Wefa was a capable algebraist aws well as a trionometer. [..] His successor al-Karkhi evidently used this translation to become an Arabic disciple of Diophantus - but without Diophantine analysis! [..] In particular, to al-Karaji is attributed the first numerical solution of equations of the form ax2n + bxn = c (only equations with positive roots were considered)."
  11. Boyer (1991), "The Arabic Hegemony" pp. 241–242. "Omar Khayyam (ca. 1050-1123), the "tent-maker," wrote an Algebra that went beyond that of al-Khwarizmi to include equations of third degree. Like his Arab predecessors, Omar Khayyam provided for quadratic equations both arithmetic and geometric solutions; for general cubic equations, he believed (mistakenly, as the sixteenth century later showed), arithmetic solutions were impossible; hence he gave only geometric solutions. The scheme of using intersecting conics to solve cubics had been used earlier by Menaechmus, Archimedes, and Alhazan, but Omar Khayyam took the praiseworthy step of generalizing the method to cover all third-degree equations (having positive roots)."
  12. Rashed, Roshdi; Armstrong, Angela (1994). The Development of Arabic Mathematics. Springer. pp. 342–3. ISBN 0-7923-2565-6.
  13. Berggren, J. L.; Al-Tūsī, Sharaf Al-Dīn; Rashed, Roshdi; Al-Tusi, Sharaf Al-Din (1990). "Innovation and Tradition in Sharaf al-Din al-Tusi's Muadalat". Journal of the American Oriental Society. 110 (2): 304–9. doi:10.2307/604533. JSTOR 604533. Rashed has argued that Sharaf al-Din discovered the derivative of cubic polynomials and realized its significance for investigating conditions under which cubic equations were solvable; however, other scholars have suggested quite difference explanations of Sharaf al-Din's thinking, which connect it with mathematics found in Euclid or Archimedes.
  14. Ball, W. W. Rouse (1960). A Short Account of the History of Mathematics. Courier Dover Publications. p. 167. ISBN 978-0-486-15784-9.
  15. Grattan-Guinness, Ivor (1997). The Norton History of the Mathematical Sciences. W.W. Norton. p. 108. ISBN 978-0-393-04650-2.
  16. Katz, Victor J. "Ideas of Calculus in Islam and India". Mathematics Magazine.
  17. Stewart, Ian (2004). Galois Theory (Third ed.). Chapman & Hall/CRC Mathematics. ISBN 9781584883937.
  18. Cooke, Roger (16 May 2008). Classical Algebra: Its Nature, Origins, and Uses. John Wiley & Sons. p. 70. ISBN 978-0-470-27797-3.
  19. Boyer (1991), "Prelude to Modern Mathematics" p. 306. "Harriot knew of relationships between roots and coefficients and between roots and factors, but like Viète he was hampered by failure to take note of negative and imaginary roots. In notation, however, he advanced the use of symbolism, being responsible for the signs > and < for 'greater than' and 'less than.'"
  20. Cajori, Florian (1928). A History of Mathematical Notations. Vol. 1. Chicago: Open Court Publishing. p. 381. ISBN 9780486677668.
  21. Struik, D. J. A Source Book in Mathematics, 1200-1800. Harvard University Press. p. 123. ISBN 978-0-674-82355-6.

Share this article:

This article uses material from the Wikipedia article Timeline_of_algebra, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.