Timeline of crystallography


This is a timeline of crystallography.

18th Century


  • 1723 – Moritz Anton Cappeller introduces the term ‘crystallography’.[1]
  • 1766 Pierre-Joseph Macquer, in his Dictionnaire de Chymie, promotes mechanisms of crystallization based on the idea that crystals are composed of polyhedral molecules (primitive integrantes).[2]
  • 1772 Jean-Baptiste L. Romé de l'Isle develops geometrical ideas on crystal structure in his Essai de Cristallographie.[3]
  • 1781 – Abbé René Just Haüy (often termed the "Father of Modern Crystallography"[4]) discovers that crystals always cleave along crystallographic planes. Based on this observation, and the fact that the inter-facial angles in each crystal species always have the same value, Haüy concluded that crystals must be periodic and composed of regularly arranged rows of tiny polyhedra (molécules intégrantes). This theory explained why all crystal planes are related by small rational numbers (the law of rational indices).[5][6]
  • 1783 – Jean-Baptiste L. Romé de l'Isle in the second edition of his Cristallographie uses the contact goniometer to discover the law of constant interfacial angles: angles are constant and characteristic for crystals of the same chemical substance.[7]
  • 1784 – René Just Haüy publishes his Law of Decrements: a crystal is composed of molecules arranged periodically in three dimensions.[8]
  • 1795 – René Just Haüy lectures on his Law of Symmetry: “[…] the manner in which Nature creates crystals is always obeying [...] the law of the greatest possible symmetry, in the sense that oppositely situated but corresponding parts are always equal in number, arrangement, and form of their faces”.[9]

19th Century


20th Century


  • 1912 - Max von Laue discovers diffraction patterns from crystals in an x-ray beam.[30]
  • 1912 - Bragg diffraction, expressed through Bragg’s law, is first presented by Lawrence Bragg on 11 November 1912 to the Cambridge Philosophical Society.[31]
  • 1913 - Lawrence Bragg publishes the first observation of x-ray diffraction by crystals.[32]
  • 1914 - Max von Laue wins the Nobel Prize in Physics "for his discovery of the diffraction of X-rays by crystals."[33]
  • 1915 - William and Lawrence Bragg share the Nobel Prize in Physics "for their services in the analysis of crystal structure by means of X-rays."[34]
  • 1916 - Peter Debye and Paul Scherrer discover powder (polycrystalline) diffraction.[35]
  • 1917 - Alfred Hull independently discovers powder diffraction in researching the crystal structure of iron.[36]
  • 1923 - Roscoe Dickinson and Albert Raymond, and independently, H.J. Gonell and H. Mark, first show that an organic molecule, specifically hexamethylenetetramine, could be characterized by x-ray crystallography.[37][38]
  • 1923 - William H. Bragg and R.E. Gibbs elucidate the structure of quartz.[39]
  • 1926 - Victor Goldschmidt distinguishes between atomic and ionic radii and postulates some rules for atom substitution in crystal structures.[40]
  • 1928 - Felix Machatschki, working with Goldschmidt, shows that silicon can be replaced by aluminium in feldspar structures.[41]
  • 1928 - Kathleen Lonsdale uses x-rays to determine that the structure of benzene is a flat hexagonal ring.[42]
  • 1929 - Linus Pauling formulated a set of rules to describe the structure of complex ionic crystals.[43]
  • 1930 - Lawrence Bragg assembles the first classification of silicates, describing their structure in terms of grouping of SiO4 tetrahedra.[44]
  • 1934 - Arthur Patterson introduces the Patterson function which uses diffraction intensities to determine the interatomic distances within a crystal, setting limits to the possible phase values for the reflected x-rays.[45]
  • 1934 - The first volumes in the series of International Tables for Crystallography are published.[46]
  • 1936 - Peter Debye wins the Nobel Prize in Physics "for his contributions to our knowledge of molecular structure through his investigations on dipole moments and on the diffraction of X-rays and electrons in gases."[47]
  • 1937 - Clinton Joseph Davisson and George Paget Thomson share the Nobel Prize in physics "for their experimental discovery of the diffraction of electrons by crystals."[48]
  • 1946 - Foundation of the International Union of Crystallography.[49]
  • 1946 - James Batcheller Sumner shares the Nobel Prize in Chemistry "for his discovery that enzymes can be crystallized".[50]
  • 1949 - Clifford Shull opens a new field of magnetic crystallography based on neutron diffraction.[51]
  • 1950 - Karle and Hauptman introduce useful formulae for phase determination, known as Direct Methods.[52]
  • 1951 - Bijvoet and his colleagues, using anomalous scattering, confirm Emil Fischer’s arbitrary assignment of absolute configuration, in relation to the direction of optical rotation of polarized light, was correct in practice.[53]
  • 1951 - Linus Pauling determines the structure of the α-helix and the β-sheet in polypeptide chains for which he won the 1954 Nobel prize in Chemistry.[54][55]
  • 1952 - David Sayre suggests that the phase problem could be more easily solved by having at least one more intensity measurement beyond those of the Bragg peaks in each dimension. This concept is understood today as oversampling.[56]
  • 1952 - Geoffrey Wilkinson and Ernst Otto Fischer determine the structure of ferrocene, the first metallic sandwich compound, for which they win the 1973 Nobel prize in Chemistry.[57][58]
  • 1953 - Determination of the structure of DNA by 3 British teams, for which Watson, Crick and Wilkins win the 1962 Nobel Prize in Physiology or Medicine in 1962 (Franklin’s death in 1958 made her ineligible for the award).[59][60][61]
  • 1954 - Linus Pauling wins the Nobel Prize in Chemistry "for his research into the nature of the chemical bond and its application to the elucidation of the structure of complex substances", specifically the determination of the structure of the α-helix and the β-sheet in polypeptide chains.”[62]
  • 1960 - John Kendrew determines the structure of myoglobin for which he shares the 1962 Nobel Prize in Chemistry.[63]
  • 1960 - After many years of research, Max Perutz determines the structure of haemoglobin for which he shares the 1962 Nobel Prize in Chemistry.[64]
  • 1962 - Michael Rossmann and David Blow lay the foundation for the molecular replacement approach which provides phase information without requiring additional experimental effort.[65]
  • 1962 - Max Perutz and John Kendrew share the Nobel Prize for Chemistry "for their studies of the structures of globular proteins", namely haemoglobin and myoglobin respectively[66]
  • 1962 - James Watson, Francis Crick and Maurice Wilkins win the Nobel Prize in Physiology or Medicine "for their discoveries concerning the molecular structure of nucleic acids and its significance for information transfer in living material," specifically for their determination of the structure of DNA.[67]
  • 1964 - Dorothy Hodgkin wins the Nobel Prize for Chemistry "for her determinations by X-ray techniques of the structures of important biochemical substances." The substances included penicillin and vitamin B12.[68]
  • 1967 - Hugo Rietveld invents the Rietveld refinement method for computation of crystal structures.[69]
  • 1968 - Aaron Klug and David DeRosier use electron microscopy to visualise the structure of the tail of bacteriophage T4, a common virus, thus signalling a breakthrough in macromolecular structure determination.[70]
  • 1968 - Dorothy Hodgkin, after 35 years of work, finally deciphers the structure of insulin.[71]
  • 1971 - Establishment of the Protein Data Bank (PDB). At PDB, Edgar Meyer develops the first general software tools for handling and visualizing protein structural data.[72][73]
  • 1973 - Alex Rich’s group publish the first report of a polynucleotide crystal structure - that of the yeast transfer RNA (tRNA) for phenylalanine.[74]
  • 1973 - Geoffrey Wilkinson and Ernst Fischer share the Nobel Prize in Chemistry “for their pioneering work, performed independently, on the chemistry of the organometallic, so called sandwich compounds”, specifically the structure of ferrocene.[75]
  • 1976 - William Lipscomb won the Nobel Prize in Chemistry “for his studies on the structure of boranes illuminating problems of chemical bonding.”[76]
  • 1978 - Stephen C. Harrison provides the first high-resolution structure of a virus: tomato bushy stunt virus which is icosahedral in form.[77]
  • 1980 - Jerome Karle and Wayne Hendrickson develop multi-wavelength anomalous dispersion (MAD) a technique to facilitate the determination of the three-dimensional structure of biological macromolecules via a solution of the phase problem.[78]
  • 1982 - Aaron Klug wins the Nobel Prize in Chemistry “for his development of crystallographic electron microscopy and his structural elucidation of biologically important nucleic acid-protein complexes.”[79]
  • 1984 - Dan Shechtman discovers quasicrystals for which he receives the Nobel Prize in Chemistry in 2011. These structures have no unit cell and no periodic translational order but have long-range bond orientational order, which generates a defined diffraction pattern.[80]
  • 1984 - Aaron Klug and his colleagues provide an advance in determining the structure of protein–nucleic acid complexes when they solve the structure of the 206-kDa nucleosome core particle.[81]
  • 1985 - Jerome Karle shares the Nobel Prize in Chemistry with Herbert A. Hauptman "for their outstanding achievements in the development of direct methods for the determination of crystal structures". Karle developed the theoretical basis for multiple-wavelength anomalous diffraction (MAD).[82]
  • 1985 - Hartmut Michel and his colleagues report the first high-resolution X-ray crystal structure of an integral membrane protein when they publish the structure of a photosynthetic reaction centre. Michel, Deisenhofer and Huber share the 1988 Nobel Prize in Chemistry for this work.[83]
  • 1986 - Ernst Ruska shares the Nobel Prize in Physics "for his fundamental work in electron optics, and for the design of the first electron microscope".[84]
  • 1986 - Johann Deisenhofer, Robert Huber and Hartmut Michel share the Nobel Prize in Chemistry "for the determination of the three-dimensional structure of a photosynthetic reaction centre."[85]
  • 1991 - Georg E. Schulz and colleagues report the structure of a bacterial porin, a membrane protein with a cylindrical shape (a ‘β-barrel’).[86]
  • 1992 - The International Union of Crystallography changes the IUCr’s definition of a crystal to “any solid having an essentially discrete diffraction pattern” thus formally recognizing quasicrystals.[87]
  • 1994 - Abrahams et al. reported the structure of an F1-ATPase which uses the proton-motive force across the inner mitochondrial membrane to facilitate the synthesis of adenosine triphosphate (ATP).[88]
  • 1994 - Bertram Brockhouse and Clifford Shull share the Nobel Prize in Physics "for pioneering contributions to the development of neutron scattering techniques for studies of condensed matter". Specifically, Brockhouse "for the development of neutron spectroscopy" and Shull "for the development of the neutron diffraction technique."[89]
  • 1997 - The X-ray crystal structure of bacteriorhodopsin was the first time the lipidic cubic phase (LCP) was used to facilitate the crystallization of a membrane protein; LCP has since been used to obtain the structures of many unique membrane proteins, including G protein-coupled receptors (GPCRs).[90]
  • 1997 - Paul D. Boyer and John E. Walker share one half of the Nobel Prize in Chemistry "for their elucidation of the enzymatic mechanism underlying the synthesis of adenosine triphosphate (ATP)" Walker determined the crystal structure of ATP synthase, and this structure confirmed a mechanism earlier proposed by Boyer, mainly on the basis of isotopic studies.[91]

21st Century


  • 2000 - Hajdu and his colleagues calculated that they could use Sayre’s ideas from the 1950s, to implement a ‘diffraction before destruction’ concept, using an X-ray free-electron laser (XFEL).[92]
  • 2001 - Harry Noller’s group publish the 5.5-Å structure of the complete Thermus thermophilus 70S ribosome. This structure revealed that the major functional regions of the ribosome were based on RNA, establishing the primordial role of RNA in translation.[93]
  • 2001 - Roger Kornberg’s group publish the 2.8-Å structure of Saccharomyces cerevisiae RNA polymerase. The structure allowed both transcription initiation and elongation mechanisms to be deduced. Simultaneously, this group reported the structure of free RNA polymerase II, which contributed towards the eventual visualisation of the interaction between DNA, RNA, and the ribosome.[94][95][96]
  • 2007 - Two X-ray crystal structures of a GPCR, the human β2 adrenergic receptor, were published. Because many drugs elicit their biological effect(s) by binding to a GPCR, the structures of these and other GPCRs may be used to develop efficacious drugs with few side effects.[97][98]
  • 2009 - Venkatraman Ramakrishnan, Thomas A. Steitz and Ada E. Yonath share the Nobel Prize in Chemistry "for studies of the structure and function of the ribosome."[99]
  • 2011 - Dan Shechtman receives the Nobel Prize in chemistry "for the discovery of quasicrystals."[100]
  • 2017 - Jacques Dubochet, Joachim Frank and Richard Henderson share the Nobel Prize in chemistry "for developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution.""[101]

References


  1. Cappeller, M.A. (1723), Prodromus crystallographiae de crystallis improprie sic dictis commentarium, H.R. Wyssing, Lucerne
  2. Macquer, P.-J. (1766). Dictionnaire de Chymie, Lacombe, Paris
  3. Romé de l'Isle, J.-B. L. (1772). Essai de Cristallographie, Paris
  4. Brock, H. (1910). The Catholic Encyclopedia, New York: Robert Appleton Company.
  5. Haüy, R.J. (1782). Sur la structure des cristaux de grenat, Observations sur la physique, sur l’histoire naturelle et sur les arts, XIX, 366-370
  6. Haüy, R.J. (1782). Sur la structure des cristaux des spaths calcaires, Observations sur la physique, sur l’histoire naturelle et sur les arts. XX, 33-39
  7. Romé de l'Isle, J.-B. L. (1783). Cristallographie ou description des formes propres à tous les corps du règne minéral dans l'état de combinaison saline, pierreuse ou métallique, Paris
  8. Haüy, R.J. (1784). Essai d’une théorie sur la structure des cristaux, appliquée à plusieurs genres de substances cristallisées, Chez Gogué et Née de La Rochelle, Paris
  9. Haüy, R.J. (1795). Leçons de Physique, in Séances des Ecoles normales […], L. Reynier, Paris
  10. Haüy, R.J. (1801). Traité de Minéralogie, Chez Louis, Paris
  11. Haüy, R.J. (1822). Traité de Cristallographie, Bachelier et Huzard, Paris
  12. Haüy, R.J. (1815). Memoire sur une loi de cristallisation appelée loi de symmétrie, Mémoires du Muséum d’Histoire naturelle 1, 81-101, 206-225, 273-298, 341-352
  13. Weiss, C.S. (1815). Uebersichtliche Darstellung der versschiedenen naturlichen Abteilungen der Kristallisations-Systeme, Abh. K. Akad. Wiss. Berlin. 289-337, 1814-1815.
  14. Mohs, F. (1822). On the crystallographic discoveries and systems of Weiss and Mohs, The Edinburgh Philosophical Journal VIII, 275-290
  15. Neumann, F.E. (1823). Beiträge zur Krystallonomie, Ernst Siegfried Mittler, Berlin und Posen
  16. Seeber, L.A. (1824). Versuch einer Erklärung des inneren Baues der Festen Körper, Ann. Phys. 76, 229-248, 349-371
  17. Frankenheim, M.L. (1826). Crystallonomische Aufsätze, Isis (Jena) 19, 497-515, 542-565
  18. Hessel J.F.C. (1830). Krystallometrie oder Krystallonomie und Krystallographie, in Gehler’s Physikalisches Wörterbuch, 8, 1023-1360, Schwickert, Leipzig
  19. Miller, W.H. (1839). A Treatise on Crystallography, Deighton-Parker, Cambridge, London
  20. Delafosse, G. (1840). De la Structure des Cristaux […] sur l’Importance de l’etude de la Symétrie dans les différentes Branches de l’Histoire Naturelle […], Fain and Thunot, Paris
  21. Frankenheim, M.L. (1842). System der Kristalle. Nova Acta Acad. Naturae Curiosorum, 19, No. 2, 469-660
  22. Pasteur, L. (1848). Mémoire sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarisation rotatoire (Memoir on the relationship that can exist between crystalline form and chemical composition, and on the cause of rotary polarization), Comptes rendus de l'Académie des sciences (Paris), 26 : 535–538
  23. Bravais, A. (1850). Mémoire sur les systèmes formés par des points distribués regulièrement sur un plan ou dans l’espace, J. l’Ecole Polytechnique 19, 1
  24. Gadolin, A. (1871). Mémoire sur la déduction d’un seul principe de tous les systems cristallographiques avec leurs subdivisions (Memoir on the deduction from a single principle of all the crystal systems with their subdivisions), Acta Soc. Sci. Fennicae. 9, 1-71
  25. Sohncke, L. (1879). Entwickelung einer Theorie der Krystallstruktur, B.G. Teubner, Leipzig
  26. Fedorov, E. (1891). The symmetry of regular systems of figures, Zap. Miner. Obshch. (Trans. Miner. Soc. Saint Petersburg) 28, 1-146
  27. Schoenflies, A. (1891). Kristallsysteme und Kristallstruktur. B. G. Teubner
  28. Barlow W. (1894). Über die Geometrischen Eigenschaften homogener starrer Strukturen und ihre Anwendung auf Krystalle (On the geometrical properties of homogeneous rigid structures and their application to crystals), Zeitschrift für Krystallographie und Minerologie, vol. 23, pages 1–63.
  29. Röntgen, W.C. (23 January 1896). On a new kind of rays. Nature 53, 274-276
  30. Laue, Max von (1912). Eine quantitative prüfung der theorie für die interferenz-erscheinungen bei Röntgenstrahlen, Sitzungsberichte der Kgl. Bayer. Akad. Der Wiss. 363–373
  31. Bragg, W.L. (1913). The Diffraction of Short Electromagnetic Waves by a Crystal, Proc. Cambridge Phil. Soc. 17, 43-57
  32. Bragg, W. L. (1913). The structure of crystals as indicated by their diffraction of X-rays, Proc. Royal. Soc. Lond. A, 89, 248–77
  33. "The Nobel Prize in Physics 1914"
  34. "The Nobel Prize in Physics 1915"
  35. Debye, P. & Scherrer P. (1916). Interferenzen an regellos orientierten Teilchen im Röntgenlicht, I. Physik. Z. 17, 277–283
  36. Hull, A.W. (1917). The crystal structure of iron, Phys. Rev. 9, 83-87
  37. Dickinson, R. G. & Raymond, A. L. (1923). The crystal structure of hexamethylenetetramine, J. Am. Chem. Soc. 45, 22–29
  38. Gonell, H. J. & Mark, H. (1923). Röntgenographische Bestimmung der Strukturformel des Hexamethylentetramins, Z. Phys. Chem. 107, 181–218
  39. Bragg, W. H. & Gibbs, R. E. (1925). The structure of α and β quartz, Proc. R. Soc. Lond. A 109, 405–426
  40. Goldschmidt, V. M. (1926). Geochemische Verteilungsgesetze, VII: Die Gesetze der Krystallochemie (Skrifter Norsk. Vid. Akademie, Oslo, Mat. Nat. Kl.
  41. Machatschki, F. (1928). Zur Frage der Struktur und Konstitution der Feldspäte, Zentralbl. Min. 97–100
  42. Lonsdale, K. (1928). The structure of the benzene ring. Nature 122, 810
  43. Pauling, L. (1929). The principles determining the structure of complex ionic crystals, J. Am. Chem. Soc. 51, 1010–1026
  44. Bragg W. L. (1930). The structure of silicates, Z. Kistallogr. 74, 237–305
  45. Patterson, A. L. (1934). A Fourier series method for the determination of the components of interatomic distances in crystals, Phys. Rev. 46, 372–376
  46. Kamminga H. (1989). The International Union of Crystallography: its formation and early development, Acta Cryst, A45, 581–601
  47. "The Nobel Prize in Physics 1936"
  48. "The Nobel Prize in Physics 1937"
  49. Kamminga, Harmke (1989). The International Union of Crystallography: its formation and early development, Acta Crystallogr. A45, 581–601
  50. "The Nobel Prize in Chemistry 1946"
  51. Shull, C. G. & Smart, J. S. (1949). Detection of antiferromagnetism by neutron diffraction, Phys. Rev. 76, 1256
  52. Karle, J. & Hauptman, H. (1950). The phases and magnitudes of the structure factors, Acta Crystallogr. 3, 181–187
  53. Bijvoet, J. M., Peerdeman, A. F. & van Bommel, A. J. (1951). Determination of the absolute configuration of optically active compounds by means of X-Rays, Nature 168, 271–272
  54. Pauling, L., Corey, R. B. & Branson, H. R. (1951). The structure of proteins: two hydrogen bonded helical configurations of the polypeptide chain, Proc. Natl. Acad. Sci. USA 37, 205–211
  55. Corey, R. B. & Pauling, L. (1951). The pleated sheet, a new layer conformation of polypeptide chains, Proc. Natl Acad. Sci. USA 37, 251–256
  56. Sayre, D. (1952). Some implications of a theorem due to Shannon, Acta Crystallogr. 5, 843
  57. Fischer, E. O. & Pfab, W. (1952). Cyclopentadien-metallkomplexe, ein Neuer Typ Metallorganischer Verbindungen, Z. Naturforsch. B 7, 377–379
  58. Wilkinson, G. (1975). The iron sandwich. A recollection of the first four months, J. Organomet. Chem. 100, 273–278
  59. Watson, J. D. & Crick, F. H. C. (1953). Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid, Nature 171, 737–738
  60. Franklin, R. E. & Gosling, R. G. (1953). Molecular configuration in sodium thymonucleate, Nature 171, 740–741
  61. Wilkins, M. H. F., Stokes, A. R. & Wilson, H. R. (1953). Molecular structure of deoxypentose nucleic acids, Nature 171, 738–740
  62. "The Nobel Prize in Chemistry 1954"
  63. Kendrew, J. C. et al. (1960). Structure of myoglobin: a three-dimensional Fourier synthesis at 2 Å resolution, Nature 185, 422–427
  64. Perutz, M. F. et al. (1960). Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-Å resolution, obtained by X-ray analysis, Nature 185, 416–422
  65. Rossmann, M. G. & Blow, D. M. (1962). The detection of sub-units within the crystallographic asymmetric unit, Acta Crystallogr. 15, 24–31
  66. "The Nobel Prize in Chemistry 1962"
  67. "The Nobel Prize in Medicine 1962"
  68. "The Nobel Prize in Chemistry 1964"
  69. Rietveld, H. M. (1967). Line profiles of neutron powder-diffraction peaks for structure refinement, Acta Crystallogr. 22, 151–152
  70. DeRosier, D. J. & Klug, A. (1968). Reconstruction of three-dimensional structures from electron micrographs, Nature 217, 130–134
  71. Blundell TL, Cutfield JF, Cutfield SM, Dodson EJ, Dodson GG, Hodgkin DC, et al. (1971). Atomic positions in rhombohedral 2-zinc insulin crystals, Nature, 231 (5304), 506–11
  72. Protein Data Bank, Nature New Biol. 233, 223 (1971)
  73. Meyer, E. F. Jr (1971). Interactive computer display for the three-dimensional study of macromolecular structures, Nature 232, 255–257
  74. Kim, S. H. et al. (1973). Three-dimensional structure of a yeast phenylalanine transfer RNA: folding of the polynucleotide chain, Science 179, 285–288
  75. "The Nobel Prize in Chemistry 1973"
  76. "The Nobel Prize in Chemistry 1976"
  77. Harrison, S. C. et al. (1978). Tomato bushy stunt virus at 2.9 Å resolution, Nature 276, 368–373
  78. Karle J. (1980). Some Developments in Anomalous Dispersion for the Structural Investigation of Macromolecular Systems in Biology, International Journal of Quantum Chemistry: Quantum Biology Symposium, 7, 357–367
  79. "The Nobel Prize in Chemistry 1982"
  80. Shechtman, D. Blech, I., Gratias, D. & Cahn, J. W. (1984). Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett. 53, 1951–1953
  81. Richmond, T. J., Finch, J. T., Rushton, B., Rhodes, D. & Klug, A. (1984). Structure of the nucleosome core particle at 7 Å resolution, Nature 311, 532–537
  82. "The Nobel Prize in Chemistry 1985"
  83. Deisenhofer J., Epp, O., Miki, K., Huber, R. & Michel, H. (1985). Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 Å resolution, Nature 318, 618–624
  84. "The Nobel Prize in Physics 1986"
  85. "The Nobel Prize in Chemistry 1986"
  86. Weiss, M. S. et al. (1991). Molecular architecture and electrostatic properties of a bacterial porin, Science 254, 1627–1630
  87. "Report of the Executive Committee for 1991". Acta Crystallographica Section A. 48 (6): 922–946. 1992. doi:10.1107/S0108767392008328.
  88. Abrahams, J. P., Leslie, A, G., Lutter, R. & Walker, J. E. (1994). Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria, Nature 370, 621–628
  89. "The Nobel Prize in Chemistry 1994"
  90. Pebay-Peyroula, E., Rummel, G., Rosenbusch, J. P. & Landau, E. M. (1997). X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases, Science 277, 1676–1681
  91. "The Nobel Prize in Chemistry 1997"
  92. Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. (2000). Potential for biomolecular imaging with femtosecond X-ray pulses, Nature 406, 752–757
  93. Yusupov, M. M. et al. (2001). Crystal structure of the ribosome at 5.5 Å resolution, Science 292, 883–896
  94. Yusupov, M. M. et al. (2001). Crystal structure of the ribosome at 5.5 Å resolution, Science 292, 883–896
  95. Cramer, P., Bushnell, D. A. & Kornberg, R. D. (2001). Structural basis of transcription: RNA polymerase II at 2.8 Å resolution, Science 292, 1863–1876
  96. Gnatt, A. L., Cramer, P., Fu, J., Bushnell, D. A. & Kornberg, R. D. (2001). Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 Å resolution, Science 292, 1876–1882
  97. Rasmussen, S. G. et al. (2007). Crystal structure of the human β2 adrenergic G-protein-coupled receptor, Nature 450, 383–387
  98. Cherezov, V. et al. (2007). High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor, Science 318, 1258–1265
  99. "The Nobel Prize in Chemistry 2009"
  100. "The Nobel Prize in Chemistry 2011"
  101. "The Nobel Prize in Chemistry 2017"

Further reading


  • Authier, André (2013), Early Days of X-ray Crystallography, Oxford Univ. Press
  • Burke, John G. (1966), Origins of the Science of Crystals, University of California Press
  • Ewald, P. P. (ed.) (1962), 50 Years of X-ray Diffraction, IUCR, Oosthoek
  • Kubbinga, H. (2012), Crystallography from Haüy to Laue: controversies on the molecular and atomistic nature of solids, Z. Kristallogr. 227, 1–26
  • Lima-de-Faria, José (ed.) (1990), Historical atlas of crystallography, Springer Netherlands
  • Milestones in Crystallography, Nature, August 2014
  • Whitlock, H.P. (1934). A Century of Progress in Crystallography, The American Mineralogist, 19, 93-100